如果直线ax+2y+2=0与直线3x-y-2=0平行,那么实数a等于( ) A.-6 B.-3 C. D. |
|
设集合M={x|0≤x<2},集合N={x|x2-2x-3<0},集合M∩N=( ) A.{x|0≤x<1} B.{x|0≤x<2} C.{x|0≤x≤1} D.{x|0≤x≤2} |
|
已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,-1)共线. (Ⅰ)求椭圆的离心率; (Ⅱ)设M为椭圆上任意一点,且,证明λ2+μ2为定值. |
|
设正项等比数列{an}的首项,前n项和为Sn,且210S30-(210+1)S20+S10=0. (Ⅰ)求{an}的通项; (Ⅱ)求{nSn}的前n项和Tn. |
|
9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为0.5.若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种. (Ⅰ)求甲坑不需要补种的概率; (Ⅱ)求3个坑中恰有1个坑不需要补种的概率; (Ⅲ)求有坑需要补种的概率.(精确到0.001). |
|
已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3). (Ⅰ)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式; (Ⅱ)若f(x)的最大值为正数,求a的取值范围. |
|
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=AB=1,M是PB的中点. (Ⅰ)证明:面PAD⊥面PCD; (Ⅱ)求AC与PB所成的角; (Ⅲ)求面AMC与面BMC所成二面角的大小. |
|
设函数f(x)=sin(2π+ϕ)(-π<ϕ<0),y=f(x)图象的一条对称轴是直线. (Ⅰ)求ϕ; (Ⅱ)求函数y=f(x)的单调增区间; (Ⅲ)证明直线5x-2y+c=0与函数y=f(x)的图象不相切. |
|
在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则 ①四边形BFD′E一定是平行四边形; ②四边形BFD′E有可能是正方形; ③四边形BFD′E在底面ABCD内的投影一定是正方形; ④平面BFD′E有可能垂直于平面BB′D. 以上结论正确的为 .(写出所有正确结论的编号) |
|
从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法共有 种. | |