设函数f(x)=ln(x+a)+x2 (I)若当x=-1时,f(x)取得极值,求a的值,并讨论f(x)的单调性; (II)若f(x)存在极值,求a的取值范围,并证明所有极值之和大于. |
|
在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q. (Ⅰ)求k的取值范围; (Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由. |
|
如图,面积为S的正方形ABCD中有一个不规则的图形M,可按下面方法估计M的面积:在正方形ABCD中随机投掷n个点,若n个点中有m个点落入M中,则M的面积的估计值为.假设正方形ABCD的边长为2,M的面积为1,并向正方形ABCD中随机投掷10000个点,以X表示落入M中的点的数目. (I)求X的均值EX; (II)求用以上方法估计M的面积时,M的面积的估计值与实际值之差在区间(-0.03,0.03)内的概率. 附表: |
|
如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点. (Ⅰ)证明:SO⊥平面ABC; (Ⅱ)求二面角A-SC-B的余弦值. |
|
设函数f(x)=|2x+1|-|x-4|. (1)求不等式f(x)>2的解集; (2)求函数f(x)的最小值. |
|
如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D.现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB. |
|
某校安排6个班到3个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有 种. | |
i是虚数单位,= .(用a+bi的形式表示,a,b∈R) | |
设函数为奇函数,则a= . | |
已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 . | |