如图,已知梯形ABCD中|AB|=2|CD|,点E分有向线段所成的比为λ,双曲线过C、D、E三点,且以A、B为焦点,当时,求双曲线离心率c的取值范围. |
|
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿场售价与上市时间的关系如图一的一条折线表示;西红柿的种植成本与上市时间的关系如图二的抛物线段表示. (1)写出图一表示的市场售价与时间的函数关系式p=f(t);写出图二表示的种植成本与时间的函数关系式Q=g(t); (2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价各种植成本的单位:元/102㎏,时间单位:天) |
|
设函数,其中a>0, (1)解不等式f(x)≤1; (2)证明:当a≥1时,函数f(x)在区间[0,+∞]上是单调函数. |
|
如图,已知平行六面体ABCD-A1B1C1D1的底面ABCD上菱形,且∠C1CB=∠C1CD=∠BCD, (1)证明:C1C⊥BD; (2)当的值为多少时,能使A1C⊥平面C1BD?请给出证明. |
|
设{an}为等比数例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4, (1)求数列{an}的首项和公比; (2)求数列{Tn}的通项公式. |
|
已知函数y=sinx+cosx,x∈R. (1)当函数y取得最大值时,求自变量x的集合; (2)该函数的图象可由y=sinx (x∈R)的图象经过怎样的平移和伸缩变换得到? |
|
如图,E、F分别是正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是 .(要求:把可能的图的序号都填上) |
|
设{an}是首项为1的正项数列,且(n+1)an+12-nan2+an+1an=0(n=1,2,3,…),则它的通项公式是an= . | |
椭圆的焦点F1、F2,点P为其上的动点,当∠F1PF2为钝角时,点P横坐标的取值范围是 . | |
乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有 种(用数字作答). | |