在大风的情况下,一小球m自A点竖直向上抛出,其运动轨迹如图所示.小球运动轨迹上A、B两点在同一水平线上,M点为轨迹的最高点.若风力的大小恒定、方向水平向右,小球抛出时的动能为4J,在M点时它的动能为2J,不计其它的阻力.求: (1)小球水平位移S1与S2的比值 (2)小球所受风力F与重力G的比(结果可用根式表示) (3)小球落回到B点时重力的瞬时功率P的表达式.
|
|
宇航员在某星球表面上的h高处,水平踢出一小石块,欲击中地面上A点,若两次踢的方向均正确,第一次初速度为v1,石块的落点比A点差了距离a;第二次初速度为v2,石块的落点比A点远了距离b.若该星球的半径为R,万有引力常数为G,求:该星球的质量M.
|
|
在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为m=2.0kg的木块相连,若在木块上再作用一竖直向下的力F,使木块缓慢向下移动0.1m,F作功2.5J,此时木块再次处于平衡,F大小为50N,如图所示。则木块下移0.1m过程中,弹性势能增加了 J.弹簧的劲度系数为 N/m(g=10m/s2)
|
|
绳长L=0.1m.小球和水平面接触但无相互作用,球两侧等距处放有固定挡板M、N,MN=L0=2m。现有一质量也为m=0.01kg的小物体B靠在M挡板处,它与水平面间的摩擦因数μ=0.25.物体与小球连线垂直于挡板M、N和绳。现物体B以初速v=10m/s从挡板M处向小球A运动。物体与小球碰撞时速度变为零,小球获得物体碰前的速度,物体与挡板碰撞将以相同速率反弹回来。物体和小球均可看成质点,那么物体和小球第一次碰撞后瞬间,细绳对小球的拉力为 N;物体从开始运动至最后停止的过程中,小球共转了 个整圈。(g=10m/s2)
|
|
在地面上以速度v0抛出质量为m的物体,抛出后物体落到比地面低h的海平面上,若以地面为零势能参考面,且不计空气阻力,那么物体在海平面上的动能为 .物体在海平面上的机械能为 .
|
|
质量为m的汽车在关闭油门后,恰能沿倾角为θ的斜坡匀速下滑,则斜坡动摩擦因数为 。现使它从坡顶由静止开始以额定功率P加速开出,至坡底所用的时间为t,则汽车到坡底时速度的大小为 。
|
|
用如图(甲)所示的实验装置验证机械能守恒定律.实验所用的电源为学生电源,输出电压为6V的交流电和直流电两种.重锤从高处由静止开始落下,重锤上拖着的纸带通过打点计时器打出一系列的点,对纸带上的点的痕迹进行测量,即可验证机械能守恒定律. ①下面列举了该实验的几个操作步骤:
E.测量打出的纸带上某些点之间的距离 F.根据测量的结果计算重锤下落过程中减少的重力势能是否等于增加的动能 指出其中没有必要进行的或者操作不恰当的步骤,将其选项对应的字母填在下面的横线上 . ②在验证机械能守恒定律的实验中发现,重锤减小的重力势能总是大于重锤增加的动能,其原因主要是因为在重锤下落过程中存在着阻力的作用,可以通过该实验装置测定该阻力的大小.若已知当地的重力加速度公认的较准确的值为g,还需要测量的物理量是 .
|
|||||
摄制组在某大楼边拍摄武打片,要求特技演员从地面飞到屋顶,如图所示,若特技演员的质量m=50kg(人和车可视为质点),g取10m/s2,导演在某房顶离地H=8m处架设了轮轴,轮和轴的直径之比为2:1.若轨道车从图中A前进s=6m到B处时速度为v=5m/s,则由于绕在轮上的细钢丝拉动,在这个过程中,特技演员( ) A.上升的高度为12m B.在最高点具有竖直向上的速度6m/s C.在最高点具有的机械能为2900J D.钢丝在这一过程中对演员做的功为1225J
|
|
如图所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,弹簧处于原长h。让圆环沿杆由静止下滑,滑到杆的底端时圆环速度为零。则在圆环下滑过程中( ) A.圆环重力的瞬时功率一直不断增大,到底端时才变为零 B.圆环、弹簧和地球组成的系统机械能守恒,弹簧的弹性势能是先增大后减小 C.弹簧的弹性势能变化了mgh D.圆环速度最大时重力的瞬时功率也最大,弹簧的弹性势能最大时圆环动能也最大
|
|
如图所示,小物块以初速度v0从O点沿斜面向上运动,同时从O点斜向上抛出一个速度大小也为v0的小球,物块和小球在斜面上的P点相遇.已知物块和小球质量相等,空气阻力忽略不计,则( ) A.物块与斜面间不一定存在滑动摩擦力 B.在P点时,小球的机械能等于物块的机械能 C.小球运动到离斜面最远处时,速度方向与斜面平行, D.小球和物块到达P点过程中克服重力做功的平均功率相等
|
|