直线y=kx+b与反比例函数(x>0)的图象分别交于点A(m,4)和点B(8,n),与坐标轴分别交于点C和点D.
(1)求直线AB的解析式;
(2)观察图象,当x>0时,直接写出kx+b>的解集;
(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.
某电器超市销售每台进价分别为2000元、1700元的A、B两种型号的空调,如表是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 5台 | 18000元 |
第二周 | 4台 | 10台 | 31000元 |
(进价、售价均保持不变,利润=销售总收入进货成本)
(1)求A、B两种型号的空调的销售单价;
(2)若超市准备用不多于54000元的金额再采购这两种型号的空调共30台,求A种型号的空调最多能采购多少台?
“校园安全”受到全社会的广泛关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调査的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 °;
(2)请补全条形统计图;
(3)若该中学共有学生1600人,请根据上述调查结果,估计该学校学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;
(4)若从对校园安全知识达到“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.
(1)计算: +|1﹣|﹣2sin60°+(π﹣2016)0﹣.
(2)先化简,再求值:(﹣x+1)÷,其中x=﹣2.
如图,正方形的顶点的坐标为为正方形的中心;以正方形的对角线为边,在的右侧作正方形为正方形的中心;再以正方形的对角线为边,在的右侧作正方形为正方形的中心;再以正方形的对角线为边,在的右侧作正方形为正方形的中心:…;按照此规律继续下去,则点的坐标为_____.
如图,一次函数的图象与轴、轴分别交于点,点在轴上,要使是以AB为腰的等腰三角形,那么点的坐标是_____.