满分5 > 初中数学试题 >

如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C...

如图,△ABC是边长为6的等边三角形,PAC边上一动点,由AC运动(AC不重合)QCB延长线上一动点,与点P同时以相同的速度由BCB延长线方向运动(Q不与B重合),过PPEABE,连接PQABD

(1)AE1时,求AP的长;

(2)当∠BQD30°时,求AP的长;

(3)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生变化,请说明理由.

 

(1)2(2)2(3)DE=3是定值 【解析】 (1)根据等边三角形的性质得到∠A=60°,根据三角形内角和定理得到∠APE=30°,根据直角三角形的性质计算; (2)过P作PF∥QC,证明△DBQ≌△DFP,根据全等三角形的性质计算即可; (3)根据等边三角形的性质、直角三角形的性质解答. (1)∵△ABC是等边三角形, ∴∠A=60°, ∵PE⊥AB, ∴∠APE=30°, ∵AE=1,∠APE=30°,PE⊥AB, ∴AP=2AE=2; (2)过P作PF∥QC, 则△AFP是等边三角形, ∵P、Q同时出发,速度相同,即BQ=AP, ∴BQ=PF, 在△DBQ和△DFP中, , ∴△DBQ≌△DFP, ∴BD=DF, ∵∠BQD=∠BDQ=∠FDP=∠FPD=30°, ∴BD=DF=FA=AB=2, ∴AP=2; (3)由(2)知BD=DF, ∵△AFP是等边三角形,PE⊥AB, ∴AE=EF, ∴DE=DF+EF=BF+FA=AB=3为定值,即DE的长不变.
复制答案
考点分析:
相关试题推荐

我们知道,多项式的因式分解就是将一个多项式化成几个整式的积的形式.通过因式分解,我们常常将一个次数比较高的多项式转化成几个次数较低的整式的积,来达到降次化简的目的.这个思想可以引领我们解决很多相对复杂的代数问题.

例如:方程就可以这样来【解析】

【解析】
原方程可化为:

所以或者

解方程得:

所以原方程的【解析】

根据你的理解,结合所学知识,解决以下问题:

1)解方程:

2)已知的三边为4xy,请你判断代数式的值的符号.

 

查看答案

如图,在等边三角形ABC中,,点EAC边上的一点,过点EBC于点D,过点E,交BC的延长线于点F

1)求证:是等腰三角形;

2)点E满足________时,点D是线段BC的三等分点;并计算此时的面积.

 

查看答案

发现与探索:小丽发现通过用两种不同的方法计算同一几何体体积,就可以得到一个恒等式,如图是边长为的正方体,被如图所示的分割线分成8块.

1)用不同的方法计算这个正方体的体积,就可以得到一个等式这个等式为________;

2)已知,利用上面的规律求的值.

 

查看答案

如图(1),方格图中每个小正方形的边长为1,点ABC都是格点.

1)画出关于直线MN对称的

2)写出的长度;

3)如图(2),AC是直线MN同侧固定的点,是直线MN上的一个动点,在直线MN上画出点,使最小.

 

查看答案

如图,点DAB上一点,DFAC于点EDE=FEFCABAB=6FC=4,求线段DB的长.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.