有一个三位数字的密码锁,每位上的数字在0到9这十个数字中任选,某人忘记了密码最后一个号码,那么此人在开锁时,在对好前两位数字后随意拨动最后一个数字恰好能开锁的概率为( )
A. B. C. D.
下列有关古典概型的四种说法:
①试验中所有可能出现的样本点只有有限个;
②每个事件出现的可能性相等;
③每个样本点出现的可能性相等;
④已知样本点总数为,若随机事件包含个样本点,则事件发生的概率.
其中所正确说法的序号是( )
A.①②④ B.①③ C.③④ D.①③④
由an与Sn的关系求通项公式
(1)已知数列的前项和为,且,求数列的通项公式;
(2)已知正项数列的前项和满足().求数列的通项公式;
(3)已知数列{an}的前n项和为Sn,a1=1,Sn=2an+1,求Sn
(4)已知正项数列中,,,前n项和为,且满足().求数列的通项公式;
(5)设数列{an}的前n项积为Tn,且Tn+2an=2(n∈N*).数列是等差数列;求数列的通项公式;
己知函数.
(1)当时,求曲线在处的切线方程:
(2)当>0时,求函数的单调区间和极值;
(3)当时,不等式恒成立,求实数的取值范围.
已知各项均为正数的数列的前项和为,满足,,恰为等比数列的前3项.
(1)求数列,的通项公式;
(2)若,求数列的前项和.
已知数列是等差数列,公差,,其前项为().且成等比数列.
(1)求数列的通项及前项和;
(2)若,数列的前n项和为,证明:对,.