已知集合,,则( )
A. B. C. D.
已知存在,使得,.
(1)求的取值范围;
(2)证明:.
在平面直角坐标系中,曲线的参数方程为,(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系,直线经过点,且与极轴所成的角为.
(1)求曲线的普通方程及直线的参数方程;
(2)设直线与曲线交于两点,若,求直线的普通方程.
已知函数,是的导函数.
(1)若,求的最值;
(2)若,证明:对任意的,存在,使得.
椭圆将圆的圆周分为四等份,且椭圆的离心率为.
(1)求椭圆的方程;
(2)若直线与椭圆交于不同的两点,且的中点为,线段的垂直平分线为,直线与轴交于点,求的取值范围.
如图,在四棱锥中,平面,底面是直角梯形,,,且.点是线段上一点,且.
(1)求证:平面平面.
(2)若,在线段上是否存在一点,使得到平面的距离为?若存在,求的值;若不存在,请说明理由.