A. B点电场强度为,方向水平向右

B. B点电场强度为,方向水平向左

C. BC线段的中点电场强度为零

D. BC两点的电场强度相同

 

一列简谐横波,沿波的传播方向依次有PQ两点, 平衡位置相距5.5 m,其振动图象如图所示,实线为P点的振动图象,虚线为Q点的振动图象。

   

①求该波的波长;

②求该波的最大传播速度。

 

如图甲所示是由透明材料制成的半圆柱体,一束单色细光束由真空沿着径向与ABθ角射入,对射出的折射光线的强度随θ角的变化进行记录,得到的关系如图乙所示。图丙是这种材料制成的透明体,左侧是半径为R的半圆柱体,右侧是长为8R,高为2R的长方体,一束该单色光从左侧A′点沿半径方向,且与长方体的长边成37°角射入透明体。已知光在真空中的传播速度为c,以下说法中正确的是     

A. 该透明材料的临界角是37º

B. 该透明材料的临界角是53º

C. 该透明材料的折射率为

D. 该透明材料的折射率为

E. 光线在透明长方体中运动的总时间为

 

如图所示,在固定的气缸AB中分别用活塞封闭了一定质量的理想气体,活塞面积之比SASB=1∶3,两活塞由穿过B底部的刚性细杆相连,可沿水平方向无摩擦滑动,两个气缸都不漏气。初始时活塞处于平衡状态,AB中气体的体积均为V0,且温度相同,A中气体压强pA=1.6p0p0是气缸外的大气压强。

   

求初始时B中气体的压强pB

现对A中气体加热,使其中气体的压强升到pA′=2.5p0同时保持B中气体的温度不变,求活塞重新达到平衡状态时A中气体体积VA

 

下列说法中正确的是         

A. 布朗运动是指液体或气体中悬浮的固体小颗粒的无规则运动

B. 气体的温度升高,每个气体分子运动的速率都增加

C. 液体表面张力形成的原因是由于液体表面层分子间距离大于r0,分子间作用力表现为引力

D. 空气相对湿度越大时,空气中水蒸气压强越接近同温度下水的饱和汽压,水蒸发越慢

E. 空调机作为制冷机使用时,将热量从温度较低的室内送到温度较高的室外,所以制冷机的工作不遵守热力学第二定律

 

在直角坐标系xoy中,A(-0.3, 0)Cx轴上的两点,P点的坐标为(0, 0.3)。在第二象限内以D(-0.3, 0.3)为圆心,0.3m为半径的圆形区域内,分布着方向垂直xoy平面向外、磁感应强度大小为B=0.1T的匀强磁场;在第一象限三角形OPC之外的区域,分布着沿y轴负方向的匀强电场。现有大量质量为m=3×10-9kg、电荷量为q=1×10-4C的相同粒子,从A点平行xoy平面以相同速率,沿不同方向射向磁场区域,其中沿AD方向射入的粒子恰好从P点进入电场,经电场后恰好通过C点。已知α=37º,不考虑粒子间的相互作用及其重力,求:

(1)粒子的初速度大小和电场强度E的大小;

(2)粒子穿越x正半轴的最大坐标。

 

如图所示,质量m=1kg的滑块,以v0=5m/s的水平初速度滑上静止在光滑水平面的平板小车,若小车的质量M=4kg,平板车足够长,滑块在平板小车上滑移1s后相对小车静止。取g=10m/s2。求:

(1)滑块与平板小车之间的动摩擦因数μ

(2)滑块相对小车静止时小车在地面上滑行的位移x及平板小车所需的最短长度L

 

一位同学为了测量某蓄电池的电动势E和内阻r,设计了如图甲所示的实验电路。已知定值电阻的阻值为R0,电压表的内阻很大,可视为理想电压表。

(1)请根据该同学所设计的电路,用笔画线代替导线,在图乙中完成实验电路的连接________

(2)实验中,该同学多次改变滑动变阻器的滑片位置,记录电压表的示数U1U2,画出U2U1图象如图丙所示。已知图线的横截距为a,纵截距为b,则蓄电池的电动势E___________________,内电阻r _________________(用题中给出的物理量符号表示);

(3)若忽略测量误差的影响,则该同学通过实验得到的电源内阻的阻值_________________(填“大于”“小于”或“等于”)真实值。

 

某实验小组用DIS来研究物体加速度与力的关系,实验装置如图甲所示。其中小车和位移传感器的总质量为M,所挂钩码总质量为m,轨道平面及小车和定滑轮之间的绳子均水平,不计轻绳与滑轮之间的摩擦及空气阻力,重力加速度为g,用所挂钩码的重力mg作为绳子对小车的拉力F,小车加速度为a,通过实验得到的aF图线如图乙所示。

(1)保持小车的总质量M不变,通过改变所挂钩码的质量m,多次重复测量来研究小车加速度aF的关系。这种研究方法叫________;(填下列选项前的字母)

A.微元法  

B.等效替代法  

C.控制变量法  

D.科学抽象法

(2)若m不断增大,图乙中曲线部分不断延伸,那么加速度a趋向值为________

(3)乙图中图线未过原点的可能原因是___________________

 

如图所示,直杆AB与水平面成α角固定,在杆上套一质量为m的小滑块(滑块可视为质点),杆上各处与滑块之间的动摩擦因数保持不变,杆底端B点处有一弹性挡板,杆与板面垂直,滑块与挡板碰撞后原速率返回。现将滑块拉到A点由静止释放,滑块与挡板第一次碰撞后恰好能上升到AB的中点,设重力加速度为g,下列说法中正确的是

  

A. 可以求出滑块下滑和上滑过程加速度的大小a1a2

B. 取过B点的水平面为零势能面,则可以判断滑块从A下滑至B的过程中,重力势能等于动能的位置在AB中点的下方

C. 可以求出滑块在杆上运动的总路程S

D. 可以求出滑块第一次与挡板碰撞时重力做功的瞬时功率P

 

如图所示,飞行器P绕某星球做匀速圆周运动,星球相对飞行器的张角为θ,下列说法正确的是

 

A. 飞行器轨道半径越大,周期越长

B. 飞行器轨道半径越大,速度越大

C. 若测得飞行器绕星球转动的周期和张角,可得到星球的平均密度

D. 若测得飞行器绕星球转动的周期及其轨道半径,可得到星球的平均密度

 

如图所示,真空中有一正四面体ABCDMN分别是ABCD的中点。现在AB两点分别固定电荷量为+Q、-Q的点电荷,下列说法正确的是

A. 将试探电荷+qC点移到D点,电场力做正功,试探电荷+q的电势能降低

B. 将试探电荷-qM点移到N点,电场力不做功,试探电荷-q的电势能不变

C. CD两点的电场强度大小相等

D. N点的电场强度方向平行AB,且跟CD垂直

 

1831年,法拉第在一次会议上展示了他发明的圆盘发电机(图甲)。它是利用电磁感应的原理制成的,是人类历史上第一台发电机。图乙是这个圆盘发电机的示意图:铜盘安装在水平的铜轴上,它的边缘正好在两磁极之间,两块铜片C、D分别与转动轴和铜盘的边缘良好接触。使铜盘转动,电阻R中就有电流通过。若所加磁场为匀强磁场,除R以外其余电阻均不计。从左往右看,铜盘沿顺时针方向匀速转动,下列说法正确的是

    

A. 铜片D的电势高于铜片C的电势

B. 电阻R中有正弦式交变电流流过

C. 铜盘半径增大1倍,流过电阻R的电流也随之增大1

D. 保持铜盘不动,磁场变为方向垂直于铜盘的交变磁场,则铜盘中有电流产生

 

如图所示,一个匝数为N=100匝,电阻不计的线框以固定转速50r/s在匀强磁场中旋转,其产生的交流电通过一匝数比为n1n2=101的理想变压器给阻值R=20 Ω的电阻供电,已知电压表的示数为20 V,从图示位置开始计时,则下列说法正确的是

A. t=0时刻线框内的电流最大

B. 变压器原线圈中电流的有效值为10 A

C. 穿过线框平面的最大磁通量为 Wb

D. 理想变压器的输入功率为10 W

 

如图所示,用两根细线ACBD悬挂一薄板,使之静止。下列说法正确的是

A. 薄板的重心一定在ACBD的延长线的交点处

B. BD的拉力大于AC的拉力

C. 剪断BD瞬间,薄板的加速度方向一定沿BD斜向下

D. 若保持AC位置不变,缓慢移动BD至竖直方向,则AC的拉力一直减小

 

将质量为m=0.1kg的小球从地面竖直向上抛出,初速度v0=20m/s,小球在运动中所受空气阻力与速率的关系为f =kv,已知k=0.1kg/s。其在空中的速率随时间的变化规律如图所示,取g=10m/s2则以下说法正确的是

  

A. 小球在上升阶段的平均速度大小为10 m/s

B. 小球在t1时刻到达最高点,此时加速度为零

C. 小球落地前匀速运动,落地速度大小v1=10 m/s

D. 小球抛出瞬间的加速度大小为20 m/s2

 

下列说法中正确的是

A. 结合能越大的原子核越稳定

B. 经过6α衰变和4β衰变后成为

C. 氢原子从较低能级跃迁到较高能级时,电势能减小

D. 用绿光或紫光照射某金属发生光电效应时,逸出光电子的最大初动能可能相等

 

如图所示,是倾角为30°的光滑固定斜面.劲度系数为的轻弹簧一端固定在斜面底端的固定挡板上,另一端与质量为的物块相连接.细绳的一端系在物体上,细绳跨过不计质量和摩擦的定滑轮,另一端有一个不计质量的小挂钩.小挂钩不挂任何物体时,物体处于静止状态,细绳与斜面平行.在小挂钩上轻轻挂上一个质量也为的物块后,物块沿斜面向上运动.斜面足够长,运动过程中始终未接触地面.已知重力加速度为,求:

(1)物块处于静止时,弹簧的压缩量

(2)设物块沿斜面上升通过点位置时速度最大,求点到出发点的距离和最大速度

(3)把物块的质量变为原来的倍(>0.5),小明同学认为,只要足够大,就可以使物块沿斜面上滑到点时的速度增大到2,你认为是否正确?如果正确,请说明理由,如果不正确,请求出沿斜面上升到点位置的速度的范围.

 

如图所示,一条轻质弹簧左端固定在水平桌面上,右端放一个可视为质点的小物块,小物块的质量为m=1.0kg,当弹簧处于原长时,小物块静止于O点,现对小物块施加一个外力,使它缓慢移动,压缩弹簧(压缩量为x=0.1m)至A点,在这一过程中,所用外力与压缩量的关系如图所示.然后释放小物块,让小物块沿桌面运动,已知O点至桌边B点的距离为L=2x.水平桌面的高为h=5.0m,计算时,可用滑动摩擦力近似等于最大静摩擦力.(g10m/s2)求:

1)在压缩弹簧过程中,弹簧存贮的最大弹性势能;

2)小物块到达桌边B点时速度的大小;

3)小物块落地点与桌边B的水平距离.

 

如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6m/s的速度运动,运动方向如图所示.一个质量为2kg的物体(物体可以视为质点),从h=3.2m高处由静止沿斜面下滑,物体经过A点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,物体向左最多能滑到传送带左右两端AB的中点处,重力加速度g=10m/s2,求:

1)传送带左右两端AB间的距离L

2)上述过程中物体与传送带组成的系统因摩擦产生的热量.

3)物体随传送带向右运动,最后沿斜面上滑的最大高度h′

 

质量为5×103 kg的汽车从静止开始匀加速启动,经过5秒速度达到=10m/s,随后以的额定功率沿平直公路继续前进,经60s达到最大速度,设汽车受恒定阻力,其大小为2.0×103N.求:

(1)汽车的最大速度

(2)汽车匀加速启动时的牵引力;

(3)汽车从启动到达到最大速度的过程中经过的路程

 

如图所示为用打点计时器验证机械能守恒定律”的实验装置.

(1)若已知打点计时器的电源频率为50 Hz,当地的重力加速度取g9.80 m/s2重物质量为0.2 kg.实验中得到一条点迹清晰的纸带如图所示P点时重物的速度为零ABC为另外3个连续点.根据图中的数据可知重物由P点运动到B重力势能减少量ΔEp________J.(结果保留三位有效数字)

(2)PB的距离用h表示B点时重物的速度为vB理论上当两者间的关系式满足__________说明下落过程中重锤的机械能守恒(已知重力加速度为g).

(3)实验中发现重物增加的动能略小于减少的重力势能其主要原因是________

A. 重物的质量过大 B. 重物的体积过小  C. 电源的电压偏低 D. 重物及纸带在下落时受到阻力

 

探究1:小车动能变化与合外力对它所做功的关系.

如图,使木板水平放置,不计绳与滑轮的摩擦.实验时,先接通电源再松开小车,打点计时器在纸带上打下一系列点.该同学在一条比较理想的纸带上,从点迹清楚的某点开始记为0点,再顺次选取5个点,分别测量这5个点到0之间的距离,并计算出各点速度平方与0点速度平方之差),填入如表:

(1)请以为纵坐标,以为横坐标在方格纸中作出图象__________

(2)若测出小车质量为0.2kg,结合图象可求得小车所受合外力的大小为________N

(3)若该同学通过计算发现小车所受合外力小于测力计读数,明显超出实验误差的正常范围.你认为主要原因是________.实验操作中改进的措施是________

 

如图所示,足够长传送带与水平方向的倾角为,物块通过平行于传送带的轻绳跨过光滑轻滑轮与物块相连,的质量为,开始时,及传送带均静止且不受传送带摩擦力作用,现让传送带逆时针匀速转动,则在上升高度(未与滑轮相碰)过程中(  )

A. 物块重力势能减少

B. 摩擦力对做的功大于机械能的增加

C. 摩擦力对做的功小于物块动能增加之和

D. 任意时刻,重力对做功的瞬时功率大小相等

 

质量不计的直角形支架两端分别连接质量为的小球.支架的两直角边长度分别为,支架可绕固定轴在竖直平面内无摩擦转动,如图所示.开始时边处于水平位置,由静止释放,则(  )

A. 球的最大速度为

B. 球的速度最大时,两小球的总重力势能最小

C. 球的速度最大时,杆与竖直方向的夹角为37°

D. 球第一次摆到最高点时,杆与水平方向的夹角为37°

 

如图所示,一轻弹簧上、下两端各连接质量均为m的两物块AB,开始时,系统静止在水平面上,现用一竖直向上的恒力F拉物块A,使其向上运动,直到物块B刚好要离开地面,重力加速度为g,则(        )

A. A的加速度不变

B. 此过程恒力F做的功等于物块A增加的机械能

C. 此过程中恒力F的功率可能先增大后减小

D. 此过程弹簧弹力对物块A做功为零

 

如图,一个人站在商场内自动扶梯的水平踏板上,随扶梯向上加速运动,下列说法正确的是

A. 踏板对人做的功等于人的机械能的增加量

B. 踏板对人的支持力做的功等于人的机械能的增加量

C. 克服人的重力做的功等于人的重力势能的增加量

D. 重力和踏板对人的支持力做的总功等于人的动能的增加量

 

把笔竖直倒立于水平硬桌面,下压外壳使其下端接触桌面(见位置a);

由静止释放,外壳竖直上升与静止的内芯碰撞(见位置b);

碰撞后内芯与外壳以共同的速度一起上升到最大高度处(见位置c)。

不计摩擦与空气阻力,下列说法正确的是

A. 仅减少笔芯中的油,则笔弹起的高度将变小

B. 仅增大弹簧的劲度系数,则笔弹起的高度将变小

C. 若笔的总质量一定,外壳质量越大笔弹起的高度越大

D. 笔弹起的过程中,弹簧释放的弹性势能等于笔增加的重力势能

 

如图所示,重10N的滑块在倾角为30°的斜面上,从点由静止下滑,到点接触到一个轻弹簧,滑块压缩弹簧到点开始弹回,返回点离开弹簧,最后又回到点,已知,=1m=0.2m,那么在整个过程中以下说法错误的是(  )

A. 滑块动能的最大值是6J

B. 弹簧的弹性势能的最大值是6J

C. 弹簧的弹力对滑块做的功是6J

D. 整个过程物体和弹簧组成的系统机械能守恒

 

如图所示,将一轻弹簧固定在倾角为30°的斜面底端,现用一质量为的物体将弹簧压缩锁定在点,解除锁定后,物体将沿斜面上滑,物体在运动过程中所能到达的最高点点的竖直高度为,已知物体离开弹簧后沿斜面向上运动的加速度大小等于重力加速度.则下列说法不正确的是(  )

A. 当弹簧恢复原长时,物体有最大动能

B. 弹簧的最大弹性势能为

C. 物体最终会静止在点位置

D. 物体从点运动到静止的过程中系统损失的机械能为

 

Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.