物体以速度v匀速通过直线上的A.B两点,所用时间为t,现在物体从A点由静止出发,先做匀加速直线运动(加速度为)到某一最大速度,然后立即做匀减速直线运动(加速度为)至B点速度恰好减为0,所用时间仍为t,则物体的( ) A.可为许多值,与、的大小有关 B.可为许多值,与、的大小无关 C.、必须满足 D.、必须是一定的
如图所示,长为L的轻杆一端固定质量为m的小球,另一端固定在转轴O,现使小球在竖直平面内做圆周运动,P为圆周的最高点。若小球通过圆周最低点时的速度大小为,忽略摩擦阻力和空气阻力,则以下判断正确的是( ) A.小球不能到达P点 B.小球到达P点时的速度大于 C.小球能达到P点,且在P点受到轻轩向上的弹力 D.小球能到达P点,且在P点受到轻杆向下的弹力
某物体运动的图像如图所示,则下列说法中正确的是( ) A.物体在第2s内和第3s内的加速度是相同的 B.物体在第1s末运动方向发生改变 C.物体在第6s末返回出发点 D.物体在第5s末离出发点最远,且最大位移为0.5m
如图所示,在M点分别以不同的速度将两个小球水平抛出,两小球分别落在水平地面上的P点、Q点。已知O点是M点在地面上的竖直投影,,且不考虑空气阻力的影响,下列说法中正确的是( ) A.两小球的下落时间之比为1:3 B.两小球的下落时间之比为1:4 C.两小球的初速度大小之比为1:3 D.两小球的初速度大小之比为1:4
在下列运动状态下,物体处于平衡状态的有( ) A.蹦床运动员上升到最高点时 B.秋千摆到最低点时 C.相对静止与水平匀速运动传送带上的货物 D.宇航员聂海胜、张晓光、王亚平乘坐“神舟”10号进入轨道绕地球做圆周运动时
有一倾角为()的斜面C,上面有一质量为m的长木板B,其上下表面与斜坡平行:B上有一质量也为m的物块A,A和B均处于静止状态,如图所示,假设在极短时间内,A.B间的动摩擦因数为减小为,B.C间的动摩擦因数减小为0.5,A.B开始运动,此时刻为计时起点:在第2s末,B的上表面突然变为光滑,保持不变,已知A开始运动时,A离B下边缘的距离,C足够长,设最大静摩擦力等于滑动摩擦力。取重力加速度大小为,求: (1)在时间内A和B的加速度大小: (2)A在B上的总的运动时间。
如图所示,足够长的光滑斜面与水平面的夹角为,斜面下端与半径的半圆形轨道平滑相连,连接点为C,半圆形轨道最低点为B,半圆形轨道最高点为A,已知,,已知当地的重力加速度为。 (1)若将质量为的小球从斜面上距离C点为的斜面上D点由静止释放,则小球到达半圆形轨道最低点B时,对轨道的压力多大? (2)要使小球经过最高点A时不能脱离轨道,则小球经过A点时速度大小应满足什么条件? (3)当小球经过A点处的速度大小为多大时,小球与斜面发生一次弹性碰撞后还能沿原来的运动轨迹返回A点?
如图所示,半径为R的空心球壳,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过球壳球心O的对称轴重合。转台以一定角速度匀速转动,一质量为的小物块放入球壳内,经过一段时间后小物块随球壳一起转动且相对球壳静止,它和O点的连线与之间的夹角为,重力加速度大小为。 (1)若,小物块受到的摩擦力恰好为零,求。 (2)若,求小物块受到的摩擦力大小和方向。
如图所示,A.B两物体在同一直线上运动,当它们相距时,A在水平拉力和摩擦了的作用下,正以的速度向右做匀速运动,而物体B此时速度向右,以的加速度做匀减速运动,求: (1)经过多长时间A追上B。 (2)若,则又经过多长时间A追上B。
为了探究质量一定时加速度与力的关系,一同学设计了如图1所示的实验装置。 (1)实验时,一定要进行的操作是 。 A.为减小误差,实验中一定要保证钩码的质量m远小于小车的质量M. B.将带滑轮的长木板右端垫高,以平衡摩擦力. C.小车靠近打点计时器,先释放小车,再接通电源,打出一条纸带,同时记录拉力传感器的示数. D.改变钩码的质量,打出几条纸带。 (2)该同学在实验中得到如图2所示的一条纸带的一部分:0、1、2、3、4、5、6、7是计数点,每相邻两计数点间还有4个打点(图中未标出)。已知打点计时器采用的是频率为50Hz的交流电,计数点间的距离如图所示,根据图中数据计算的加速度 (结果保留两位有效数字)。 (3)以拉力传感器的示数F为横坐标,加速度为纵坐标,画出的图像是一条直线,测得图线的斜率为,则小车的质量为 。
在“验证力的平行四边形定则”实验中,某同学的实验情况如图所示,其中A为固定橡皮筋的图钉,O为橡皮筋与细绳的结点,OB和OC为细绳。 (1)本实验中,采用下列哪些方法和步骤可以减小实验误差 。 A.两个分力、间的夹角尽量小些 B.两个分力、间的夹角尽量大些 C.橡皮筋的细绳要稍短一些 D.实验中,弹簧秤必须与木板平行,读数时视线要正对弹簧秤刻度 (2)为了完成实验,在用两个完全相同的弹簧秤成一定角度拉橡皮筋时,必须记录的有 。 A.两细绳的方向 B.橡皮筋的原长 C.两弹簧秤的示数 D.结点O的位置 (3)本实验采用的是等效替代法,但若将细绳也换成橡皮筋,则实验结果是否会发生变化? 答: (选填“变化”或“不变化”)。 (4)若保持结点O的位置及OB绳方向不变,而将OC顺时针缓慢转动一小角度,其他操作均正确,则 。 A.弹簧秤甲的示数不变 B.弹簧秤甲的示数一直减小 C.弹簧秤乙的示数可能增大 D.弹簧秤乙的示数一定先减小后增大
如图所示,质量分别为和的两小球用轻绳连接在一起,并用细线悬挂在天花板上,两小球恰处于同一水平位置,细线与竖直方向间夹角分别为与(>)。现将A.B间轻绳剪断,则两小球开始摆动,最大速度分别为和,最大动能分别为和,则下列说法中正确的是( ) A.一定小于 B.轻绳剪断时加速度之比为 C.一定大于 D.一定大于
物体静止在光滑水平面上,先施加一水平向右的恒力,经时间后撤去,立刻施加另一水平向左的恒力,又经时间后物体回到开始出发点。在前后两段时间内,、的平均功率为、,、在时刻和时刻的瞬时功率为、间的关系是( ) A. B. C. D.
有四颗地球卫星,还未发射,在地球赤道上随地球表面一起转动,处于地面附近的近地轨道上正常运动,是地球同步卫星,是高空探测卫星,各卫星排列位置如图,不计空气阻力,则有( ) A.的向心加速度等于重力加速度 B.在相同时间内转过的弧长最长 C.在内转过的圆心角是 D.的运动周期有可能是20小时
如图所示,水平绷紧的传送带AB长,始终以恒定速率运行。初速度大小为的小物块(可视为质点)从与传送带等高的光滑水平地面上经A点滑上传送带。小物块,物块与传送带间动摩擦因数,取,下列说法中正确的是( ) A.小物块可以到达B点 B.小物块不能到达B点,但可返回A点,返回A点速度为6m/s C.小物块向左运动速度减为0时相对传送带滑动的距离达到最大 D.小物块在传送带上运动时,因相互间摩擦力产生的热量为50J
如图所示,从倾角为的斜面上的M点水平抛出一个小球,抛出时小球的动能为,最后小球落在斜面上的N点,则小球运动到距离斜面最远处时的动能为( ) A. B. C. D.
1845年英国物理学家和数学家斯托马斯(S.G.Stokes)研究球体在液体中下落时,发现了液体对球的粘滞阻力与球的半径、速度及液体的种类有关,有,其中物理量为液体的粘滞系数,它还与液体的种类及温度有关,如图所示,现将一颗小钢珠由静止释放到盛有蓖麻油的足够深量筒中,下列描绘小钢珠在下沉过程中加速度大小与时间关系的图像可能正确的是( )
如图所示,水平桌面光滑,A.B物体间的动摩擦因数为(可以认为最大静摩擦力等于滑动摩擦力),A物体质量为,B和C物体的质量均为,滑轮光滑,砝码盘中可以任意加减砝码,在保持A.B.C三个物体相对静止且共同向左运动的情况下,B.C间绳子所能达到的最大拉力是( ) A. B. C. D.
如图所示,物体A.B用细绳连接后跨过滑轮,A静止在倾角为的斜面上,B悬挂着。已知质量,不计滑轮摩擦,现将斜面倾角由增大到,但物体仍保持静止,那么下列说法中正确的是( ) A.绳子的张力增大 B.物体A对斜面的压力将增大 C.物体A受到的静摩擦力增大 D.滑轮受到绳子的作用力保持不变
为了探测X星球,载着登陆舱的探测飞机在以该星球中心为圆心,半径为的圆轨道上运动,周期为,总质量为,随后登陆舱脱离飞船,变轨到离星球更近的半径为的圆轨道上运动,此时登陆舱的质量为,则( ) A.星球的质量 B.星球表面的重力加速度 C.登陆舱在与轨道上运动时的速度大小之比 D.登陆舱在半径为轨道上做圆周运动的周期
质量为的物体在光滑的水平面上运动,在水平面上建立坐标系,时,物体位于坐标系的原点O,物体在x轴和y轴方向上的分速度、随时间变化的图像如图甲、乙所示,则下列说法中正确的是( ) A.物体所受的合力是3N B.物体的初速度是 C.物体做的一定是直线运动 D.物体做的一定曲线运动
(13分)如右图所示,在矩形ABCD区域内,对角钱BD以上的区域存在有平行于AD向下的匀强电场,对角线BD以下的区域存在有垂直于纸面的匀强磁场(图中未标出),矩形AD边长L,AB边长为2L。一个质量为m、电荷量为+q的带电粒子(重力不计)以初速度vo从A点沿AB方向进入电场,在对角线BD的中点P处进入磁场,并从DC边上以垂直于DC边的速度离开磁场(图中未画出),求: (1)电场强度E的大小 (2)带电粒子经过P点时速度v的大小和方向: (3)磁场的磁感应强度B的大小和方向。
(12分) 回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底面的匀强磁场,D形盒中央为质子流,D形盒的交流电压为U,静止质子经电场加速后,进入D形盒,其最大轨道半径为R,磁场的磁感应强度为B,质子质量为m.电荷量为q,求: (1)交流电源的频率是多少. (2)质子经回旋加速器最后得到的最大动能多大; (3)质子在D型盒内运动的总时间t(狭缝宽度远小于R,质子在狭缝中运动时间不计)
(8分)如图所示,竖直放置的两块足够大的带电平行板间形成一个方向水平向右的匀强电场区域,场强E=3×104N/C.在两板间用绝缘细线悬挂一个质量m=5×10-3kg的带电小球,静止时小球偏离竖直方向的夹角θ=60°(g取).试求: (1)小球的电性和电荷量; (2)悬线的拉力; (3)若小球静止时离右板d=5×10-2 m,剪断悬线后,小球经多少时间碰到右极板.(不计空气阻力)
(8分)在倾角θ=30°的绝缘斜面上,固定一光滑金属框,宽l=0.5 m,接入电动势E=6 V、内阻r=0.5Ω的电池.垂直框面放置一根质量m=0.2kg的金属棒ab,金属棒接入电路的电阻R0 的阻值为0.2Ω,整个装置放在磁感应强度B=1.0T方向垂直框面向上的匀强磁场中,调节滑动变阻器R的阻值使金属棒静止在框架上如图所示.(框架的电阻与摩擦不计,框架与金属棒接触良好,g取10 m/s2)求 (1)金属棒受到的安培力的大小与方向 (2)通过金属棒的电流强度I的大小。 (3)滑动变阻器R接入电路的阻值。 (4)电源的输出功率P。
(4分)①用电压表、电流表测定电池的电动势和内阻实验.采用的是下列________电路图. ②某同学将和测得的数值逐一描绘在坐标纸上,再根据这些点分别画出了图线a与b,如图所示,你认为比较合理的是图线________(填“a”或“b”). ③根据该图线得到电源电动势的大小是________V;内阻是________Ω(结果保留两位小数).
(6分)某同学要测绘标有“2.5V 0.3A”字样小灯泡的伏安特性曲线。他从实验室找来相关器材连成如图甲所示的电路进行实验。其中电压表量程选用0-3V。该同学一边实验一边思考,提出疑问,请你帮他解决: (1)开关闭合前变阻器的滑片应置于 端(填“左”或“右”) (2)测得小灯泡两端电压为0.10V时电流为0.10A,电压为0.50V时电流为0.18A,那么当电压表的指针如图乙所示时,电压值为 V,试分析此时电流 0.14A(填“一定等于”、“一定大于”、 “可能大于”或“可能小于”)。
(4分)用多用表测量元件的电阻,选用“×100”倍率的电阻档测量,发现多用表指针偏转过大,因此需选择 倍率的电阻档(填:“×10”或“×1k”),并 再进行测量,多用表的示数如图(a)所示,测量结果为 Ω。
空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力.下列说法正确的是 A.入射速度不同的粒子在磁场中的运动时间一定不同 B.入射速度相同的粒子在磁场中的运动轨迹一定相同 C.在磁场中运动时间相同的粒子,其运动轨迹一定相同 D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大
如图所示,一个质量为m、电荷量为+q的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处在磁感应强度为B的匀强磁场中(不计空气阻力).现给圆环向右的初速度v0,在以后的运动过程中,圆环运动的速度图象可能是图中的
|