(2006•十堰)已知抛物线C1:y=-x2+2mx+n(m,n为常数,且m≠0,n>0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B,连接AC,BC,AB. 注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为. (1)请在横线上直接写出抛物线C2的解析式:______; (2)当m=1时,判定△ABC的形状,并说明理由; (3)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由. |
|
(2006•宿迁)如图,抛物线y=-x2+x-2与x轴相交于点A、B,与y轴相交于点C. (1)求证:△AOC∽△COB; (2)过点C作CD∥x轴交抛物线于点D.若点P在线段AB上以每秒1个单位的速度由A向B运动,同时点Q在线段CD上也以每秒1个单位的速度由D向C运动,则经过几秒后,PQ=AC. |
|
(2006•泰安)如图,Rt△AOB是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在x轴上,点B在y轴上,OB=,∠BAO=30度.将Rt△AOB折叠,使BO边落在BA边上,点O与点D重合,折痕为BC. (1)求直线BC的解析式; (2)求经过B,C,A三点的抛物线y=ax2+bx+c的解析式;若抛物线的顶点为M,试判断点M是否在直线BC上,并说明理由. |
|
(2006•泰州)将一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC=10. (1)如图(1),在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点,求E点的坐标; (2)如图(2),在OA、OC边上选取适当的点E′、F,将△E′OF沿E′F折叠,使O点落在AB边上的D′点,过D′作D′G∥A′O交E′F于T点,交OC′于G点,求证:TG=A′E′. (3)在(2)的条件下,设T(x,y)①探求:y与x之间的函数关系式.②指出变量x的取值范围. (4)如图(3),如果将矩形OABC变为平行四边形OA“B“C“,使O C“=10,O C“边上的高等于6,其它条件均不变,探求:这时T(x,y)的坐标y与x之间是否仍然满足(3)中所得的函数关系,若满足,请说明理由;若不满足,写出你认为正确的函数关系式. |
|
(2006•天津)已知抛物线y=ax2+bx+c的顶点坐标为(2,4). (Ⅰ)试用含a的代数式分别表示b,c; (Ⅱ)若直线y=kx+4(k≠0)与y轴及该抛物线的交点依次为D、E、F,且,其中O为坐标原点,试用含a的代数式表示k; (Ⅲ)在(Ⅱ)的条件下,若线段EF的长m满足3≤m≤3,试确定a的取值范围. |
|
(2006•威海)抛物线y=ax2+bx+c(a≠0)过点A(1,-3),B(3,-3),C(-1,5),顶点为M点. (1)求该抛物线的解析式; (2)试判断抛物线上是否存在一点P,使∠POM=90度?若不存在,说明理由;若存在,求出P点的坐标; (3)试判断抛物线上是否存在一点K,使∠OMK=90°?说明理由. |
|
(2006•威海)在梯形ABCD中,AB∥CD,AB=8cm,CD=2cm,AD=BC=6cm,M、N为同时从A点出发的两个动点,点M沿A⇒D⇒C⇒B的方向运动,速度为2cm/秒;点N沿A⇒B的方向运动,速度为1cm/秒.当M、N其中一点到达B点时,点M、N运动停止.设点M、N的运动时间为x秒,以点A、M、N为顶点的三角形的面积为ycm2. (1)试求出当0<x<3时,y与x之间的函数关系式; (2)试求出当4<x<7时,y与x之间的函数关系式; (3)当3<x<4时,以A、M、N为顶点的三角形与以B、M、N为顶点的三角形是否有可能相似?若相似,试求出x的值;若不相似,试说明理由. |
|
(2006•潍坊)已知二次函数图象的顶点在原点O,对称轴为y轴.一次函数y=kx+1的图象与二次函数的图象交于A,B两点(A在B的左侧),且A点坐标为(-4,4).平行于x轴的直线l过(0,-1)点. (1)求一次函数与二次函数的解析式; (2)判断以线段AB为直径的圆与直线l的位置关系,并给出证明; (3)把二次函数的图象向右平移2个单位,再向下平移t个单位(t>0),二次函数的图象与x轴交于M,N两点,一次函数图象交y轴于F点.当t为何值时,过F,M,N三点的圆的面积最小,最小面积是多少? |
|
(2006•乌兰察布)如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达B,C点),过D作∠ADE=45°,DE交AC于E. (1)求证:△ABD∽△DCE; (2)设BD=x,AE=y,求y关于x的函数表达式; (3)当△ADE是等腰三角形时,求AE的长. |
|
(2006•无锡)已知抛物线y=ax2+bx+c(a>0)的顶点是C(0,1),直线l:y=-ax+3与这条抛物线交于P、Q两点,与x轴、y轴分别交于点M和N. (1)设点P到x轴的距离为2,试求直线l的函数关系式; (2)若线段MP与PN的长度之比为3:1,试求抛物线的函数关系式. |
|