已知:在△ABC中,AB=AC. (1)设△ABC的周长为7,BC=y,AB=x(2≤x≤3).写出y关于x的函数关系式,并在直角坐标系中画出此函数的图象; (2)如图,D是线段BC上一点,连接AD.若∠B=∠BAD,求证:△ABC∽△DBA. |
|
如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC. |
|
如图,有两个动点E,F分别从正方形ABCD的两个顶点B,C同时出发,以相同速度分别沿边BC和CD移动,问: (1)在E,F移动过程中,AE与BF的位置和大小有何关系?并给予证明; (2)若AE和BF相交点O,图中有多少对相似三角形?请把它们写出来. |
|
如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE. (1)写出图中两对相似三角形(不得添加字母和线); (2)请分别说明两对三角形相似的理由. |
|
一般来说,依据数学研究对象本质属性的相同点和差异点,将数学对象分为不同种类的数学思想叫做“分类”的思想;将事物进行分类,然后对划分的每一类分别进行研究和求解的方法叫做“分类讨论”的方法.请依据分类的思想和分类讨论的方法解决下列问题: 如图,在△ABC中,∠ACB>∠ABC. (1)若∠BAC是锐角,请探索在直线AB上有多少个点D,能保证△ACD∽△ABC(不包括全等)? (2)请对∠BAC进行恰当的分类,直接写出每一类在直线AB上能保证△ACD∽△ABC(不包括全等)的点D的个数? |
|
如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上. (1)求证:△ABD∽△CAE; (2)如果AC=BD,AD=2BD,设BD=a,求BC的长. |
|
如(a)图,在平面直角坐标系中,点A坐标为(12,0),点B坐标为(6,8),点C为OB的中点,点D从点O出发,沿△OAB的三边按逆时针方向以2个单位长度/秒的速度运动一周. (1)点C坐标是______,当点D运动8.5秒时所在位置的坐标是______; (2)设点D运动的时间为t秒,试用含t的代数式表示△OCD的面积S,并指出t为何值时,S最大; (3)点E在线段AB上以同样速度由点A向点B运动,如(b)图,若点E与点D同时出发,问在运动5秒钟内,以点D,A,E为顶点的三角形何时与△OCD相似?(只考虑以点A、O为对应顶点的情况) |
|
如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上. (1)判断△ABC和△DEF是否相似,并说明理由; (2)P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三角形,并在图中连接相应线段,不必说明理由) |
|
如图,已知OA⊥OB,OA=4,OB=3,以AB为边作矩形ABCD,使AD=a,过点D作DE垂直OA的延长线交于点E. (1)证明:△OAB∽△EDA; (2)当a为何值时,△OAB与△EDA全等?请说明理由,并求出此时点C到OE的距离. |
|
如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F. (1)证明:△ACE∽△FBE; (2)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由. |
|