如图⊙O的内接△ABC中,外角∠ACF的角平分线与⊙O相交于D点,DP⊥AC,垂足为P,DH⊥BF,垂足为H.问: (1)∠PDC与∠HDC是否相等,为什么? (2)图中有哪几组相等的线段? (3)当△ABC满足什么条件时,△CPD∽△CBA,为什么? |
|
如图,已知矩形ABCD,AB=,BC=3,在BC上取两点E,F(E在F左边),以EF为边作等边三角形PEF,使顶点P在AD上,PE,PF分别交AC于点G,H. (1)求△PEF的边长; (2)在不添加辅助线的情况下,当F与C不重合时,从图中找出一对相似三角形,并说明理由; (3)若△PEF的边EF在线段BC上移动.试猜想:PH与BE有何数量关系并证明你猜想的结论. |
|
如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问: (1)经过多少时间,△AMN的面积等于矩形ABCD面积的? (2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由. |
|
如图,在△ABC和△DEF中,∠A=∠D=90°,AB=DE=3,AC=2DF=4. (1)判断这两个三角形是否相似并说明为什么? (2)能否分别过A,D在这两个三角形中各作一条辅助线,使△ABC分割成的两个三角形与△DEF分割成的两个三角形分别对应相似?证明你的结论. |
|
在数学课堂上,老师讲解“相似三角形”之后,接着出了一道题目让同学练习,题目是:“如图,四边形ABCD是平行四边形,E是BA延长线上一点,CE与AD相交于F.请写出与△EBC相似的三角形,并加以证明.” 聪聪看后,迅速写出了下面解答: “与△EBC相似的只有△EAF.证明如下:∵四边形ABCD是平行四边形,∴AD∥BC.∴△EBC∽△EAF.” 你对聪聪的解答有何意见?为什么? |
|
已知:如图,弦AB和CD相交于⊙O内一点P(P与O不重合),连接AC,BD,过A作AE⊥CP于E,过D作DF⊥PB于F. (1)请找出图中二对相似三角形:______∽______,______∽______; (2)请你从(1)中选择一对相似三角形加以证明. |
|
如图①,将矩形ABCD沿着对角线AC分割,得到△ABC和△ACD,将△ACD绕点A按逆时针方向旋转α度,使D,A,B三点在同一直线上,得到图②,再把图②中的△ADE沿着AB方向平移s格,使点D与点A重合,得到图③,设EF与AC相交于点G. 请解答以下问题: (1)上述过程中,α=______度,s=______格; (2)在图③中,除了△ABC∽△EAF以外,还能找出对相似三角形; (3)请写一对你在图③中找出的相似三角形,并加以证明. |
|
如图,点O是△ABC外的一点,分别在射线OA,OB,OC上取一点A′,B′,C′,使得,连接A′B′,B′C′,C′A′,所得△A′B′C′与△ABC是否相似?证明你的结论. |
|
如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F. (1)求证:△PFA∽△ABE; (2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由. |
|
如图,AB是半圆O的直径,C是半圆上一个动点,AD、BD分别平分∠BAC和∠ABC,延长AD分别与BC、半圆O交于点F、E,连接BE、CE. (1)证明:△ABE∽△BFE; (2)证明:△BDE是等腰直角三角形; (3)如果四边形ABEC是梯形,试求∠ABC的大小. |
|