如图,在4×3的正方形方格中,△ABC和△DEC的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC=______°,BC=______ |
|
如图,四边形ABCD是平行四边形.O是对角线AC的中点,过点O的直线EF分别交AB、DC于点E、F,与CB、AD的延长线分别交于点G、H. (1)写出图中不全等的两个相似三角形(不要求证明); (2)除AB=CD,AD=BC,OA=OC这三对相等的线段外,图中还有多对相等的线段,请选出其中一对加以证明. |
|
如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明. |
|
如图,梯形ABCD内接于⊙O,BC∥AD,AC与BD相交于点E,在不添加任何辅助线的情况下: (1)图中共有几对全等三角形,请把它们一一写出来,并选择其中一对全等三角形进行证明; (2)若BD平分∠ADC,请找出图中与△ABE相似的所有三角形. |
|
已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点. (1)求证:①BE=CD;②△AMN是等腰三角形; (2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN. |
|
如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD. |
|
如图,点D,E在BC上,且FD∥AB,FE∥AC. 求证:△ABC∽△FDE. |
|
如图,直线DE经过⊙O上的点C,并且OE=OD,EC=DC,⊙O交直线OD于A、B两点,连接BC,AC,OC.求证: (1)OC⊥DE; (2)△ACD∽△CBD. |
|
如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G. (1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长. |
|
如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB. (1)求sin∠ABC的值; (2)若E为x轴上的点,且S△AOE=,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似? (3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由. |
|