如下图,在⊙O中,点P在直径AB上运动,但与A、B两点不重合,过点P作弦CE⊥AB,在上任取一点D,直线CD与直线AB交于点F,弦DE交直线AB于点M,连接CM. (1)如图1,当点P运动到与O点重合时,求∠FDM的度数. (2)如图2、图3,当点P运动到与O点不重合时,求证:FM•OB=DF•MC. |
|
在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=.分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系. (1)求点B的坐标; (2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F,求直线DE的解析式; (3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由. |
|
如图,在△ABC中,D是BC边上一点,E是AC边上一点,且满足AD=AB,∠ADE=∠C. (1)求证:∠AED=∠ADC,∠DEC=∠B; (2)求证:AB2=AE•AC. |
|
如图在Rt△ABC中,∠A=90°,AB=10,AC=5,若动点P从点B出发,沿线段BA运动到A点为止,运动为每秒2个单位长度.过点P作PM∥BC,交AC于点M,设动点P运动时间为x秒,AM的长为y. (1)求出y关于x的函数关系式,并写出自变量x的取值范围; (2)当x为何值时,△BPM的面积S有最大值,最大值是多少? |
|
如图,边长为5的正方形OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P. (1)当点E坐标为(3,0)时,试证明CE=EP; (2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)(t>0),结论CE=EP是否成立,请说明理由; (3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由. |
|
如图,直角梯形ABCD中,∠ADC=90°,AD∥BC,点E在BC上,点F在AC上,∠DFC=∠AEB. (1)求证:△ADF∽△CAE; (2)当AD=8,DC=6,点E、F分别是BC、AC的中点时,求直角梯形ABCD的面积? |
|
设△A1B1C1的面积是S1,△A2B2C2的面积为S2(S1<S2),当△A1B1C1∽△A2B2C2,且时,则称△A1B1C1与△A2B2C2有一定的“全等度”.如图,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,连接AC. (1)若AD=DC,求证:△DAC与△ABC有一定的“全等度”; (2)你认为:△DAC与△ABC有一定的“全等度”正确吗?若正确,说明理由;若不正确,请举出一个反例说明. |
|
问题背景 (1)如图,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E作EF∥AB交BC于点F.请按图示数据填空: 四边形DBFE的面积S=______,△EFC的面积S1=______,△ADE的面积S2=______. 探究发现 (2)在(1)中,若BF=a,FC=b,DE与BC间的距离为h.请证明S2=4S1S2. 拓展迁移 (3)如图,▱DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,试利用(2)中的结论求△ABC的面积. |
|
如图,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t(秒). (1)当t=0.5时,求线段QM的长; (2)当0<t<2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值; (3)当t>2时,连接PQ交线段AC于点R.请探究是否为定值?若是,试求这个定值;若不是,请说明理由. |
|
如图,△ABC中AB=AC,BC=6,点D位BC中点,连接AD,AD=4,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E. (1)试判断四边形ADCE的形状并说明理由. (2)将四边形ADCE沿CB以每秒1个单位长度的速度向左平移,设移动时间为t(0≤t≤6)秒,平移后的四边形A’D’C’E’与△ABC重叠部分的面积为S,求S关于t的函数表达式,并写出相应的t的取值范围. |
|