某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件; (1)若商场平均每天要赢利1 200元,每件衬衫应降价多少元; (2)每件衬衫降价多少元时,商场平均每天赢利最多. |
|
已知A(-1,m)与B(2,m+3)是反比例函数图象上的两个点. (1)求k的值; (2)若点C(-1,0),则在反比例函数图象上是否存在点D,使得以A,B,C,D四点为顶点的四边形为梯形?若存在,求出点D的坐标;若不存在,请说明理由. |
|
如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF. (1)求证:BD=CD; (2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论. |
|
如图,河对岸有一铁塔AB.在C处测得塔顶A的仰角为30°,向塔前进16米到达D,在D处测得A的仰角为45°,求铁塔AB的高. |
|
如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”.小明设计了一个游戏:游戏者每次从袋中随机摸出一个球,并且自由转动图中的转盘(转盘被分成面积相等的三角形). 如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏者获胜的概率?试用树状图或列表法加以说明. |
|
(1)计算:tan45°+; (2)解方程:x2+5x-6=0. |
|
如图,一次函数y=x-2的图象分别交x轴、y轴于A、B,P为AB上一点且PC为△AOB的中位线,PC的延长线交反比例函数(k>0)的图象于Q,S△OQC=,则k的值和Q点的坐标分别为k= ,Q . |
|
如图,电路图上有编号为①②③④⑤⑥共6个开关和一个小灯泡,闭合开关①或同时闭合开关②,③或同时闭合开关④⑤⑥都可使一个小灯泡发光,问任意闭合电路上其中的两个开关,小灯泡发光的概率为 . |
|
如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2)且与x轴交点的横坐标分别为x1,x2,其中-2<x1<-1,0<x2<1,下列结论:①b<0;②a+b+c<0;③4a-2b+c<0;④2a-b<0,其中正确的有 .(填代号) |
|
如图所示,AD是△ABC的中线,∠ADC=60°,BC=8,把△ADC沿直线AD折叠后,点C落在C′位置,则BC′的长为 . |
|