()= ;()-2= . | |
如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C. (1)求A、B、C三点的坐标; (2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积; (3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由. |
|
已知二次函数y1=ax2+bx+c(a≠0)的图象经过三点(1,0),(-3,0),(0,-). (1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图象; (2)若反比例函数y2=(x>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内交于点A(x,y),x落在两个相邻的正整数之间,请你观察图象,写出这两个相邻的正整数; (3)若反比例函数y2=(x>0,k>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内的交点A,点A的横坐标x满足2<x<3,试求实数k的取值范围. |
|
如图,在直角坐标系中,以点P(1,-1)为圆心,2为半径作圆,交x轴于A、B两点,抛物线y=ax2+bx+c(a>0)过点A、B,且顶点C在⊙P上. (1)求⊙P上劣弧AB的长; (2)求抛物线的解析式; (3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出点D的坐标;若不存在,请说明理由. |
|
如图,在边长均为1的小正方形网格纸中,△OAB的顶点O、A、B均在格点上,且O是直角坐标系的原点,点A在x轴上. (1)以O为位似中心,将△OAB放大,使得放大后的△OA1B1与△OAB对应线段的比为2:1,画出△OA1B1.(所画△OA1B1与△OAB在原点两侧); (2)求出线段A1B1所在直线的函数关系式. |
|
如图,Rt△ABC中,∠BAC=90°,BC所在直线的解析式为,AC=3,若AB的中点D在双曲线上,求a的值? |
|
如图,在⊙O中,弦AB与CD相交于点P,连接AC、DB. (1)求证:△PAC与△PDB是否相似______(填“是”或“否”); (2)当=______时,=4. |
|
如图,太子湾公园在“五一”黄金周为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改造,把倾角由45°减至30°,已知台阶在水平方向延长了4米(即DB=4米). 求:(1)台阶的高度是多少? (2)改善后的台阶坡面会加长多少? |
|
以下左图形为杭州国际会议中心,是全国最大的球形建筑,如图1是球体的轴截面,已知这个球体的高度为86米,球的半径为50米,则这个国际会议中心建筑的占地面积为多少?(结果保留π) |
|
如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影部分的两部分的面积之差是 . |
|