一船在A处测得北偏东45°方向有一灯塔B,船向正东方向以每小时20海里的速度航行1.5小时到达C处时,又观测到灯塔B在北偏东15°方向上,求此时航船与灯塔相距多少海里?
|
|
如图,已知△ABC中CE⊥AB于E,BF⊥AC于F, (1)求证:△AFE∽△ABC; (2)若∠A=60°时,求△AFE与△ABC面积之比.
|
|
已知抛物线y=--x+4, (1)用配方法确定它的顶点坐标、对称轴; (2)x取何值时,y随x增大而减小? (3)x取何值时,抛物线在x轴上方?
|
|
在△ABC中,AB=AC=5,BC=6,求cosB、sinA.
|
|
如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1). (1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形; (2)分别写出B、C两点的对应点B′、C′的坐标; (3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.
|
|
已知在△ABC中,∠C=90°,,,解这个直角三角形.
|
|
根据公式cos(α+β)=cosαcosβ-sinαsinβ,求cos75°.
|
|
先将一矩形ABCD置于直角坐标系中,使点A与坐标系的原点重合,边AB,AD分别落在x轴、y轴上(如图1),再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图2),若AB=4,BC=3,则图1和图2中点B点的坐标为 ,点C的坐标 .
|
|
如图,点A在反比例函数y=的图象上,AB垂直于x轴,若S△AOB=4,那么这个反比例函数的解析式为 .
|
|
若锐角α满足tan(α+15°)=1,则cosα=
|
|