如图所示,一张矩形纸片ABCD的长AB=acm,宽BC=bcm,E、F分别为AB、CD的中点,这张纸片沿直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD的长与宽之比,则a:b等于( ) A.:1 B.1: C.:1 D.1: |
|
如图,身高1.6米的学生小李想测量学校的旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( ) A.6.4米 B.7米 C.8米 D.9米 |
|
(新颖题)△ABC∽△A1B1C1,且相似比为,△A1B1C1∽△A2B2C2,且相似比为,则△ABC与△A2B2C2的相似比为( ) A. B. C.或 D. |
|
如图是小孔成像原理的示意图,根据图中标注的尺寸,如果物体AB的高度为36cm,那么它在暗盒中所成的像CD的高度应为 cm. |
|
小王同学想利用树影测量校园内的树高.他在某一时刻测得小树高为1.5米时,其影长为1.2米,当他测量教学楼旁的一棵大树的影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高约为 米. | |
如图,要测量河两岸相对的两点A、B间的距离,先从B处出发,与AB成90°角方向,向前走50米到C处立一根标杆,然后方向不变继续朝前走10米到D处,在D处沿垂直于BD的方向再走5米到达E处,使A(目标物),C(标杆)与E在同一直线上,则AB的长为 米. | |
科学研究表明,当人的下肢长与身高之比为0.618时,看起来最美.某成年女士身高为153cm,下肢长为92cm,该女士穿的高跟鞋鞋跟的最佳高度约为 cm.(精确到0.1cm) | |
如图,要测量池塘两端A、B的距离,可先取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接ED,如果量出DE的长为25米,那么池塘宽AB为 米. |
|
如图,在同一时刻,小明测得他的影长为1米,距他不远处的一棵槟榔树的影长为5米,已知小明的身高为1.5米,则这棵槟榔树的高是 米. |
|
如图,在梯形ABCD中,AD∥BC,AC、BD交于O点,AD:BC=3:5,则AO:OC= ,S△AOD:S△BOC= ,S△AOD:S△ADB= . |
|