为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是x人,那么x满足的方程是( ) A. B.= C. D. |
|
有如下四个命题: (1)三角形有且只有一个内切圆; (2)四边形的内角和与外角和相等; (3)顺次连接四边形各边中点所得的四边形一定是菱形; (4)一组对边平行且一组对角相等的四边形是平行四边形. 其中真命题的个数有( ) A.1个 B.2个 C.3个 D.4个 |
|
如图,直线y=mx与双曲线y=交于A,B两点,过点A作AM⊥x轴,垂足为点M,连接BM,若S△ABM=2,则k的值为( ) A.-2 B.2 C.4 D.-4 |
|
不等式组的解集在数轴上表示正确的是( ) A. B. C. D. |
|
为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是( ) A.8,8 B.8.4,8 C.8.4,8.4 D.8,8.4 |
|
下列几何体中,主视图和左视图不同的是( ) A. 圆柱 B. 正方体 C. 正三棱柱 D. 球 |
|
下列运算正确的是( ) A.(a+b)2=a2+b2 B.x3+x3=x6 C.(a3)2=a5 D.(2x2)(-3x3)=-6x5 |
|
-3的倒数是( ) A. B.-3 C.3 D. |
|
如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点. (1)求这个二次函数的表达式. (2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由. (3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积. |
|
如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC. (1)求证:EF是⊙O的切线; (2)求证:AC2=AD•AB; (3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积. |
|