如图,已知抛物线y1=-x2+1,直线y2=-x+1,当x任取一值时,x对应的函数值分别为y1,y2,若y1≠y2,取y1,y2中的较小值记为M1,若y1=y2,记M=y1=y2,例如:x=2时,y1=-3,y2=-1,y1<y2,M=-3.下列判断: ①当x>0时,y1>y2; ②当x<0时,x值越大,M值越大; ③使得M大于1的x值不存在; ④使得M=0的x值是1. 其中正确的是( ) A.①② B.①④ C.②③ D.①④ |
|
如图,O是△ABC的内心,过点O作EF∥AB,与AC、BC分别交E、F,则( ) A.EF>AE+BF B.EF<AE+BF C.EF=AE+BF D.EF≤AE+BF |
|
如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,点A的坐标为(1,0),则E点的坐标为( ) A.(,0) B.(,) C.(,) D.(2,2) |
|
折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想,把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论( ) A.角的平分线上的点到角的两边的距离相等 B.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半 C.直角三角形斜边上的中线等于斜边的一半 D.如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形 |
|
如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则下列结论正确的是( ) A.h2=2h1 B.h2=1.5h1 C.h2=h1 D.h2=h1 |
|
如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是( ) A.2cm<OA<5cm B.2cm<OA<8cm C.1cm<OA<4cm D.3cm<OA<8cm |
|
已知直线y=ax(a≠0)与双曲线y=(k≠0)的一个交点坐标为(-2,3),则它们的另一个交点坐标是( ) A.(-2,-3) B.(-3,-2) C.(2,-3) D.(3,-2) |
|
我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是( ) A. B. C. D. |
|
如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( ) A.a户最长 B.b户最长 C.c户最长 D.三户一样长 |
|
根据如图所示程序计算函数值,若输入的x的值为-1,则输出的函数值为( ) A.1 B.-2 C. D.3 |
|