今年我国发现的首例甲型H1N1流感确诊病例在成都某医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需了解这位病人7天体温的( ) A.众数 B.方差 C.平均数 D.频数 |
|
如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是( ) A.sinA= B.tanA= C.cosB= D.tanB= |
|
如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴相交于点C(0,).当x=-4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC、BC. (1)求抛物线的解析式; (2)若点M、N时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标; (3)抛物线对称轴上是否存在一点F,使得△ACF是等腰三角形?若不存在请说明理由;若存在,请求出F点坐标. |
|
如图所示,某地区对某种药品的需求量y1(万件),供应量y2(万件)与价格x(元/件)分别近似满足下列函数关系式:y1=-x+70,y2=2x-38,需求量为0时,即停止供应.当y1=y2时,该药品的价格称为稳定价格,需求量称为稳定需求量. (1)求该药品的稳定价格与稳定需求量. (2)价格在什么范围内,该药品的需求量低于供应量? (3)由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量? |
|
(1)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF. (2)如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.求GH的长. |
|
如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4. (1)求∠POA的度数; (2)计算弦AB的长. |
|
为了丰富校园文化生活,某校计划在午间校园广播台播放“百家讲坛”的部分内容.为了了解学生的喜好,抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如下: 请根据统计图提供的信息回答以下问题: (1)抽取的学生数为______名; (2)该校有3000名学生,估计喜欢收听易中天《品三国》的学生有______名; (3)估计该校女学生喜欢收听刘心武评《红楼梦》的约占全校学生的______%; (4)你认为上述估计合理吗?理由是什么? |
|
先化简,再求值:(a+b)(a-b)+(a+b)2-2a2,其中a=3,b=-. |
|
计算:|-2|-()-1+(π-3.14)+×cos45° |
|
已知△ABC是边长为1cm的等边三角形,以BC为边作等腰三角形BCD,使得DB=DC,且∠BDC=120°,点M是AB边上的一个动点,作∠MDN交AC边于点N,且满足∠MDN=60°,则△AMN的周长为 . |
|