菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售. (1)求平均每次下调的百分率; (2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择: 方案一:打九折销售; 方案二:不打折,每吨优惠现金200元. 试问小华选择哪种方案更优惠,请说明理由. |
|
在一个口袋中有4个完全相同的小球,把它们分别标号为1,3,5,7,随机摸出一个小球然后放回,再随机摸出一个小球,求下列事件的概率: (1)两次取出的小球标号相同; (2)两次取出的小球的标号和是5的倍数. |
|
将两块大小相同的含30°角的直角三角板(∠BAC=∠B′A′C=30°)按图①方式放置,固定三角板A′B′C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A′C交于点E,AC与A′B′交于点F,AB与A′B′相交于点O. (1)求证:△BCE≌△B′CF; (2)当旋转角等于30°时,AB与A′B′垂直吗?请说明理由. |
|
已知,如图所示,图①和图②中的每个小正方形的边长都为1个单位长度. (1)将图①中的格点△ABC(顶点都在网络线交点处的三角形叫做格点三角形)向上平移2个单位长度得到△A1B1C1,请你在图中画出△A1B1C1; (2)在图②中画一个与格点△ABC相似的格点△A2B2C2,且△A2B2C2与△ABC的相似比为2:1. |
|
某兴趣小组用仪器测测量湛江海湾大桥主塔的高度.如图,在距主塔从AE60米的D处.用仪器测得主塔顶部A的仰角为68°,已知测量仪器的高CD=1.3米,求主塔AE的高度(结果精确到0.1米) (参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48) |
|
用配方法解方程:2x2-4x+1=0 |
|
计算:. |
|
如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是 . |
|
抛物线y=x2-4x+5的对称轴是直线 . | |
⊙O的半径为1cm,弦AB=cm,AC=cm,则∠BAC的度数为 . | |