如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于A、B、C、D四点.抛物线y=ax2+bx+c与y轴交于点D,与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C. (1)求抛物线的解析式; (2)抛物线的对称轴交x轴于点E,连接DE,并延长DE交圆O于F,求EF的长; (3)过点B作圆O的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由. |
|
如图点A,点B是反比例函数上两点,过这两点的直线与x轴的夹角为45度,与y轴的交点为(0,2),作AC∥x轴,AC⊥BC于点C, ①求阴影部分面积(用k的代数式表示); ②若BC和AC分别交x轴、y轴于D,E,连接DE,求证:△ABC∽△EDC; ③若S△ABC=4,求出这两个函数解析式. |
|
A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图. (1)求y关于x的表达式; (2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,相遇前两车相距的路程为s(千米).请直接写出s关于x的表达式; (3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a. |
|
如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=5,BC=3. (1)求sin∠BAC的值; (2)如果OE⊥AC,垂足为E,求OE的长; (3)求tan∠ADC的值.(结果保留根号) |
|
为了进一步了解八年级500名学生的身体素质情况,体育老师对八年级(1)班50名学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图如下所示:
(1)表中的a=______,次数在140≤x<160这组的频率为______; (2)请把频数分布直方图补充完整; (3)这个样本数据的中位数落在第______组; (4)若八年级学生一分钟跳绳次数(x)达标要求是:x<120不合格;x≥120为合格,则这个年级合格的学生有______人. |
|||||||||||||||||||
如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B市位于点P的北偏东75°方向上,距离点P 320千米处. (1)说明本次台风会影响B市; (2)求这次台风影响B市的时间. |
|
计算÷(-). |
|
计算:-(3.14-π)+(1-cos30°)×()-2. |
|
如图,直角梯形OABC的直角顶点是坐标原点,边OA,OC分别在X轴,y轴的正半轴上.OA∥BC,D是BC上一点,,AB=3,∠OAB=45°,E,F分别是线段OA,AB上的两个动点,且始终保持∠DEF=45°,设OE=x,AF=y,则y与x的函数关系式为 ,如果△AEF是等腰三角形时.将△AEF沿EF对折得△A′EF与五边形OEFBC重叠部分的面积 . |
|
如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为菱形,应添加的条件是 . |
|