如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60度. (1)求⊙O的直径; (2)若D是AB延长线上一点,连接CD,当BD长为多少时,CD与⊙O相切; (3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为t(s)(0<t<2),连接EF,当t为何值时,△BEF为直角三角形. |
|
甲、乙两家商场进行促销活动,甲商场采用“买200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;…,乙商场按顾客购买商品的总金额打6折促销. (1)若顾客在甲商场购买了510元的商品,付款时应付多少钱? (2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=),写出p与x之间的函数关系式,并说明p随x的变化情况; (3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由. |
|
将16个相同的小正方形拼成正方形网格,并将其中的两个小正方形涂成黑色,请你用两种不同的方法分别在图甲、图乙中再将两个空白的小正方形涂黑,使它成为轴对称图形. |
|
如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC. (1)求证:四边形BCEF是平行四边形, (2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形. |
|
“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整). 请根据以上信息回答: (1)本次参加抽样调查的居民有多少人? (2)将两幅不完整的图补充完整; (3)若居民区有8000人,请估计爱吃D粽的人数; (4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率. |
|
解不等式组:. |
|
(1)计算:; (2)已知x2-3x=4,求2(x-1)2-(x+1)(x-2)-3的值. |
|
如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论: ①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1,则S4=2S2;④若S1=S2,则P点在矩形的对角线上. 其中正确的结论的序号是 (把所有正确结论的序号都填在横线上). |
|
已知△ABC的面积为36,将△ABC沿BC平移到△A′B′C′,使B′和C重合,连接AC′交AC于D,则△C′DC的面积为 . |
|
若ab=-1,a+b=2,则式子(a-1)(b-1)= . | |