将抛物线y=2x2如何平移可得到抛物线y=2(x-4)2-1( ) A.向左平移4个单位,再向上平移1个单位 B.向左平移4个单位,再向下平移1个单位 C.向右平移4个单位,再向上平移1个单位 D.向右平移4个单位,再向下平移1个单位 |
|
如果,那么x的取值范围是( ) A.x≤2 B.x<2 C.x≥2 D.x>2 |
|
一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是( ) A.106元 B.105元 C.118元 D.108元 |
|
某班5位同学的身高分别为155,160,160,161,169(单位:厘米),这组数据中,下列说法错误的是( ) A.众数是160 B.中位数是160 C.平均数是161 D.标准差是2 |
|
长城总长约为6 700 010米,用科学记数法表示是(保留两个有效数字)( ) A.6.7×105米 B.6.7×106米 C.6.7×107米 D.6.7×108米 |
|
下列等式正确的是( ) A.(-x2)3=-x5 B.x6÷x3=x2 C.x3+x2=x5 D.(-x2y3)3=-x6y9 |
|
我们从不同的方向观察同一物体时,可以看到不同的平面图形,如图,从图的左面看这个几何体的左视图是( ) A. B. C. D. |
|
-3-1的倒数是( ) A.-3 B.3 C. D. |
|
在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义: 若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|; 若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|. 例如:点P1(1,2),点P2(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“非常距离”为|2-5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点). (1)已知点A(-,0),B为y轴上的一个动点, ①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标; ②直接写出点A与点B的“非常距离”的最小值; (2)已知C是直线y=x+3上的一个动点, ①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标; ②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E与点C的坐标. |
|
如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8). (1)求抛物线的解析式及其顶点D的坐标; (2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由; (3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度? |
|