如图,在平面直角坐标系中,顶点为(4,-1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3). (1)求此抛物线的解析式 (2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明; (3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积. |
|
已知:关于x的一元二次方程mx2-(2m+n)x+m+n=0①. (1)求证:方程①有两个实数根; (2)求证:方程①有一个实数根为1; (3)设方程①的另一个根为x1,若m+n=2,m为正整数且方程①有两个不相等的整数根时,确定关于x的二次函数y=mx2-(2m+n)x+m+n的解析式; (4)在(3)的条件下,把Rt△ABC放在坐标系内,其中∠CAB=90°,点A、B的坐标分别为(1,0)、(4,0),BC=5,将△ABC沿x轴向右平移,当点C落在抛物线上时,求△ABC平移的距离. |
|
我市一家电子计算器专卖店每只进价13元,售价20元,多买优惠;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元. (1)求一次至少买多少只,才能以最低价购买? (2)写出该专卖店当一次销售x(时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围; (3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少? |
|
如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E,CF⊥AF,且CF=CE. (1)求证:CF是⊙O的切线; (2)若sin∠BAC=,求的值. |
|
某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分-100分;B级:75分-89分;C级:60分-74分;D级:60分以下) (1)求出D级学生的人数占全班总人数的百分比; (2)求出扇形统计图中C级所在的扇形圆心角的度数; (3)该班学生体育测试成绩的中位数落在哪个等级内; (4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人? |
|
将两块斜边长度相等的等腰直角三角纸板如图(1)摆放,若把图(1)中的△BCN逆时针旋转90°,得到图(2),图(2)中除△ABC≌△CED、△BCN≌△ACF外,你还能找到一对全等的三角形吗?写出你的结论并说明理由. |
|
先化简,再求值:,其中x满足x2-x-1=0. |
|
如图,已知AB是⊙O的直径,C是⊙O上的一点,连接AC,过点C作直线CD⊥AB交AB于点D,E是OB上一点,直线CE与⊙O交于点F,连接AF交直线CD于G,AC=,AG=2,则AF长为 . |
|
把抛物线y=x2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为 . | |
从-2,-1,1,2这四个数中,任取两个不同的数作为一次函数y=kx+b的系数k,b,则一次函数y=kx+b的图象不经过第四象限的概率是 . | |