已知函数f(x)=lnx,g(x)=-(x为实常数). (1)当a=1时,求函数φ(x)=f(x)-g(x)在x∈[4,+∞)上的最小值; (2)若方程e2f(x)=g(x)(其中e=2.71828…)在区间[]上有解,求实数a的取值范围. |
|
设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1 (1)求证:f(0)=1且当x<0时,f(x)>1 (2)求证:f(x)在R上是减函数; (3)设集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a, 且A∩B=∅,求实数a的取值范围. |
|
已知函数f(x)=alnx-ax-3(a∈R). (1)求函数f(x)的单调区间; (2)函数y=f(x)的图象在x=4处的切线的斜率为,若函数g(x)=x3+x2[f′(x)+]在区间(1,3)上不是单调函数,求m的取值范围. |
|
设a为实数,函数f(x)=x2+|x-a|+1,x∈R (1)讨论f(x)的奇偶性; (2)求f(x)的最小值. |
|
已知定义在区间[-1,1]上的函数为奇函数.. (1)求实数b的值. (2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论. (3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值. |
|
已知命题p:函数f(x)=(2a-6)x在R上是减函数,命题q:关于x的方程x2-3ax+2a2+1=0的两个实根均大于0,若p∨q为真,p∧q为假,求实数a的取值范围. |
|
给出定义:若m-<x≤m+(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题: ①函数y=f(x)的定义域为R,值域为[0,]; ②函数y=f(x)的图象关于直线x=(k∈Z)对称; ③函数y=f(x)是周期函数,最小正周期为1; ④函数y=f(x)在[-,]上是增函数. 其中正确的命题的序号 . |
|
已知两个实数集,若B中恰有一元素没有原象且f(a1)≥f(a2)≥f(a3)≥f(a4)≥f(a5),则这样的映射共有 个. | |
已知p:(x-m+1)(x-m-1)<0;q:,若p的充分不必要条件是q,则实数m的取值范围是 . | |
已知:若函数y=f(x)的定义域是[0,2],则函数g(x)=的定义域是 . | |