相关试题
当前位置:首页 > 高中数学试题
已知实数集为R,集合A={x|x<5},B={x|x<2},则A∩CRB=( )
A.∅
B.{x|2<x<5}
C.{x|2≤x<5}
D.{x|2≤x≤5}
已知f(x)=(x-1)2,g(x)=10(x-1),数列{an}满足a1=2,(an+1-an)g(an)+f(an)=0,bn=manfen5.com 满分网
(1)求证:数列{an-1}是等比数列;  
(2)当n取何值时,{bn}取最大值,并求出最大值;
(3)若manfen5.com 满分网manfen5.com 满分网对任意m∈N*恒成立,求实数t的取值范围.
若椭圆C1manfen5.com 满分网的离心率等于manfen5.com 满分网,抛物线C2:x2=2py(p>0)的焦点在椭圆的顶点上.
(1)求抛物线C2的方程;
(2)求过点M(-1,0)的直线l与抛物线C2交E、F两点,又过E、F作抛物线C2的切线l1、l2,当l1⊥l2时,求直线l的方程.
设函数manfen5.com 满分网的图象在点(x,f(x))处的切线的斜率为k(x),且函数manfen5.com 满分网为偶函数.若函数k(x)满足下列条件:①k(-1)=0;②对一切实数x,不等式manfen5.com 满分网恒成立.
(Ⅰ)求函数k(x)的表达式;
(Ⅱ)求证:manfen5.com 满分网(n∈N*).
某中学在高三开设了4门选修课,每个学生必须且只需选修1门选修课.对于该年级的甲、乙、丙3名学生,回答下面的问题:
(1)求这3名学生选择的选修课互不相同的概率;
(2)某一选修课被这3名学生选修的人数的数学期望.
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=manfen5.com 满分网AB=1.
(I)证明:面PAD⊥面PCD;
(II)求AC与PB所成角的余弦值.

manfen5.com 满分网
已知函数manfen5.com 满分网的最小正周期为4π.
(1)求f(x)的单调递增区间;
(2)在△ABC中,角A,B,C的对边分别是a,b,c满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
设a,b,c,x,y,z是正数,且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,则manfen5.com 满分网=   
由一个数列中部分项按原来次序排列的数列叫做这个数列的子数列,试在无穷等比数列manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,…中找出一个无穷等比的子数列,使它所有项的和为manfen5.com 满分网,则此子数列的通项公式为   
三视图如下的几何体的体积为   
manfen5.com 满分网
共1028964条记录 当前(62839/102897) 首页 上一页 62834 62835 62836 62837 62838 62839 62840 62841 62842 62843 62844 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.