函数f(x)=2x+7的零点为( ) A.7 B. C.-7 D. |
|
已知集合M={1,2,3,4},N={2,3,4},则( ) A.N∈M B.N⊆M C.N⊇M D.N=M |
|
设函数f(x)=kax-a-x(a>0且a≠1)是奇函数, (1)求k的值; (2)若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集; (3)若,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求m的值. |
|
已知f(x)=-3x2+a(5-a)x+b (1)当不等式f(x)>0的解集为(-1,3)时,求实数a,b的值; (2)若对任意实数a,f(2)<0恒成立,求实数b的取值范围; (3)设b为已知数,解关于a的不等式f(1)<0. |
|
如图,在四棱锥P-ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且PA=PD=AD,若E、F分别为PC、BD的中点. (Ⅰ) 求证:EF∥平面PAD; (Ⅱ) 求证:EF⊥平面PDC. |
|
运货卡车以每小时x千米的速度匀速行驶130千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+)升,司机的工资是每小时14元. (1)求这次行车总费用y关于x的表达式; (2)当x为何值时,这次行车的总费用最低,并求出最低费用的值. |
|
如图,长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点. (1)求证:直线BD1∥平面PAC; (2)求证:平面PAC⊥平面BDD1; (3)求证:直线PB1⊥平面PAC. |
|
已知集合,B={x|(x+a)(x-2a)≤0},其中a>0. (1)求集合A; (2)若A∩B=∅,求实数a的取值范围. |
|
如图所示,E、F分别是正方形SD1DD2的边D1D、、DD2的中点,沿SE,SF,EF将其折成一个几何体,使D1,D,D2重合,记作D.给出下列位置关系:①SD⊥面DEF;②SE⊥面DEF;③DF⊥SE;④EF⊥面SED,其中成立的有: . | |
已知二次函数f(x)=ax2+2x+c(x∈R)的值域为[0,+∞),则f(1)的最小值为 . | |