相关试题
当前位置:首页 > 高中数学试题
函数f(x)=2x+7的零点为( )
A.7
B.manfen5.com 满分网
C.-7
D.manfen5.com 满分网
已知集合M={1,2,3,4},N={2,3,4},则( )
A.N∈M
B.N⊆M
C.N⊇M
D.N=M
设函数f(x)=kax-a-x(a>0且a≠1)是奇函数,
(1)求k的值;
(2)若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集;
(3)若manfen5.com 满分网,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求m的值.
已知f(x)=-3x2+a(5-a)x+b
(1)当不等式f(x)>0的解集为(-1,3)时,求实数a,b的值;
(2)若对任意实数a,f(2)<0恒成立,求实数b的取值范围;
(3)设b为已知数,解关于a的不等式f(1)<0.
如图,在四棱锥P-ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且PA=PD=manfen5.com 满分网AD,若E、F分别为PC、BD的中点.
(Ⅰ) 求证:EF∥平面PAD;
(Ⅱ) 求证:EF⊥平面PDC.

manfen5.com 满分网
运货卡车以每小时x千米的速度匀速行驶130千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+manfen5.com 满分网)升,司机的工资是每小时14元.
(1)求这次行车总费用y关于x的表达式;
(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.
manfen5.com 满分网如图,长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.
(1)求证:直线BD1∥平面PAC;
(2)求证:平面PAC⊥平面BDD1
(3)求证:直线PB1⊥平面PAC.
已知集合manfen5.com 满分网,B={x|(x+a)(x-2a)≤0},其中a>0.
(1)求集合A;
(2)若A∩B=∅,求实数a的取值范围.
如图所示,E、F分别是正方形SD1DD2的边D1D、、DD2的中点,沿SE,SF,EF将其折成一个几何体,使D1,D,D2重合,记作D.给出下列位置关系:①SD⊥面DEF;②SE⊥面DEF;③DF⊥SE;④EF⊥面SED,其中成立的有:   
已知二次函数f(x)=ax2+2x+c(x∈R)的值域为[0,+∞),则f(1)的最小值为   
共1028964条记录 当前(62876/102897) 首页 上一页 62871 62872 62873 62874 62875 62876 62877 62878 62879 62880 62881 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.