相关试题
当前位置:首页 > 高中数学试题
某地区共有10万户居民,该地区城市住户与农村住户之比为4:6,根据分层抽样方法,调查了该地区1 000户居民冰箱拥有情况,调查结果如下表所示,那么可以估计该地区农村住户中无冰箱的总户数约为( )
城市农村
有冰箱356(户)440(户)
无冰箱44(户)160(户)

A.1.6万户
B.4.4万户
C.1.76万户
D.0.24万户
已知全集U=R,集合manfen5.com 满分网,则(∁A)∪B=( )
A.[1,+∞)
B.(1,+∞)
C.[0,+∞)
D.(0,+∞)
manfen5.com 满分网等于( )
A.1+i
B.-1+i
C.1-i
D.-1-i
设f(x)=ex-a(x+1).
(1)若a>0,f(x)≥0对一切x∈R恒成立,求a的最大值;
(2)设manfen5.com 满分网是曲线y=g(x)上任意两点,若对任意的a≤-1,直线AB的斜率恒大于常数m,求m的取值范围;
(3)是否存在正整数a.使得manfen5.com 满分网对一切正整数n都成立?若存在,求a的最小值;若不存在,请说明理由.
已知数列{an}满足manfen5.com 满分网,且a2=6.
(1)设manfen5.com 满分网,求数列{bn}的通项公式;
(2)设manfen5.com 满分网,c为非零常数,若数列{un}是等差数列,记manfen5.com 满分网,Sn=c1+c2+…+cn,求Sn
已知函数f(x)=2(x2-2ax)lnx-x2+4ax+1,
(1)当a=0时,求曲线y=f(x)在(e,f(e))处的切线方程(e是自然对数的底数);
(2)求函数f(x)的单调区间.
某种汽车购买时费用为14.4万元,每年应交付保险费、养路费及汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,…,依等差数列逐年递增.
(Ⅰ)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;
(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
manfen5.com 满分网如图,在正三棱柱ABC-A1B1C1中,点D在棱BC上,AD⊥C1D,
(1)设点M是棱BB1的中点,求证:平面AMC1⊥平面AA1C1C;
(2)设点E是B1C1的中点,过A1E作平面α交平面ADC1于l,求证:A1E∥l.
在锐角三角形ABC中,manfen5.com 满分网
(1)求tanB的值;
(2)若manfen5.com 满分网,求实数m的值.
已知各项均为正数的两个数列{an},{bn},由下表给出:
n12345
an15312
bn162xy
定义数列{cn}:manfen5.com 满分网,并规定数列{an},{bn}的“并和”为Sab=a1+a2+…+a5+c5,若Sab=15,则y的最小值为   
共1028964条记录 当前(63174/102897) 首页 上一页 63169 63170 63171 63172 63173 63174 63175 63176 63177 63178 63179 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.