已知函数f(x)=lnx的图象是曲线C,点是曲线C上的一系列点,曲线C在点An(an,f(an))处的切线与y轴交于点Bn(0,bn),若数列{bn}是公差为2的等差数列,且f(a1)=3. (1)分别求出数列{an}与数列{bn}的通项公式; (2)设O为坐标原点,Sn表示△AnBn的面积,求数列{Sn}的前n项和Tn. |
|
已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}. (1)求函数f(x)的解析式; (2)求函数g(x)=的零点个数. |
|
如图所示,在三棱锥P-ABC中,,平面PAC⊥平面ABC,PD⊥AC于点D,AD=1,CD=3,PD=2. (1)求三棱锥P-ABC的体积; (2)证明△PBC为直角三角形. |
|
某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图. (1)求图中实数a的值; (2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数; (3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率. |
|
已知函数f(x)=. (Ⅰ)求函数f(x)的最小正周期和值域; (Ⅱ)若a为第二象限角,且,求的值. |
|
两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作a1=1,第2个五角形数记作a2=5,第3个五角形数记作a3=12,第4个五角形数记作a4=22,…,若按此规律继续下去,则a5= ,若an=145,则n= . |
|
设集合A={x|y=lgx},B={x|x2<2x},求,则A∩B= . | |
对于函数f(x),在使f(x)≥M成立的所有常数M中,我们把M的最大值称为f(x)的“下确界“,则函数的“下确界“等于 . | |
在△ABC中,∠C为直角,=(x,0),=(-1,y),则动点P(x,y)的轨迹方程是 . | |
在直角坐标系xoy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,则圆ρ2+2ρcosθ-3=0标准方程是 . | |