定义在R上的函数f(x)满足f(x)=,则f(3)的值为( ) A.-1 B.-2 C.1 D.2 |
|
已知函数f(x)=ax+logax(a>0且a≠1)在[1,2]上的最大值与最小值之和为(loga2)+6,则a的值为( ) A. B. C.2 D.4 |
|
设A={x|-1<x<1},B={x|x-a>0},若A⊆B,则a的取值范围是( ) A.(-∞,-1) B.(-∞,-1] C.[1,+∞) D.(1,+∞) |
|
下列四个函数中,与y=x表示同一函数的是( ) A.y=()2 B.y= C.y= D.y= |
|
已知集合A={(x,y)|x+y=0,x,y∈R},B={(x,y)|x-y=0,x,y∈R},则集合A∩B的元素个数是( ) A.0 B.1 C.2 D.3 |
|
函数的定义域是( ) A.(3,+∞) B.[3,+∞) C.(4,+∞) D.[4,+∞) |
|
已知函数f(x)=(2-a)lnx++2ax(a∈R). (Ⅰ)当a=0时,求f(x)的极值; (Ⅱ)当a<0时,求f(x)单调区间; (Ⅲ)若对任意a∈(-3,-2)及x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围. |
|
已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形. (Ⅰ)证明:BN⊥平面C1B1N; (Ⅱ)设直线C1N与平面CNB1所成的角为θ,求cosθ的值; (Ⅲ)M为AB中点,在CB上是否存在一点P,使得MP∥平面CNB1,若存在,求出BP的长;若不存在,请说明理由. |
|
某航模兴趣小组的同学,为了测出在湖面上航模航行速度,采用如下办法,在岸边设置两个观测点A、B,且AB=80米,当航模在C处时,测得∠ABC=105°及∠BAC=30°,经过20秒钟后,航模直线航行到D处,此时测得∠BAD=90°和∠ABD=45°,试根据以上条件求出航模速度(结果保留根号) |
|
已知,且函数, (1)求f(x)的增区间; (2)求f(x)在区间上的最大、最小值及相应的x值; (3)求函数f(x)的图象关于直线x=π对称图象的对称中心和对称轴方程. |
|