设U=R,A={x|x>0},B={x|x>1},则A∩∁UB=( ) A.{x|0≤x<1} B.{x|0<x≤1} C.{x|x<0} D.{x|x>1} |
|
设函数f(x)=ex+sinx,g(x)=ax,F(x)=f(x)-g(x). (1)若x=0是F(x)的极值点,求a的值; (2)当a=时,若存在x1、x2∈[0,+∞)使得f(x1)=g(x2),求x2-x1的最小值; (3)若x∈[0,+∞)时,F(x)≥F(-x)恒成立,求a的取值范围. |
|
已知抛物线C的顶点在原点,焦点坐标为F(2,0),点P的坐标为(m,0)(m≠0),设过点P的直线l交抛物线C于A,B两点,点P关于原点的对称点为点Q. (1)当直线l的斜率为1时,求△QAB的面积关于m的函数表达式. (2)试问在x轴上是否存在一定点T,使得TA,TB与x轴所成的锐角相等?若存在,求出定点T 的坐标,若不存在,请说明理由. |
|
如图,在直角梯形ABCD中AD∥BC,BC⊥CD,∠ABC=45°,直角梯形ABCD与矩形ADQP所在平面垂直,将矩形ADQP沿PD对折,使得翻折后点Q落在BC上,设DC=1. (1)求证:AQ⊥DQ; (2)求线段AD的最小值,并指出此时点Q的位置; (3)当AD长度最小时,求直线BD与平面PDQ所成的角的正弦值. |
|
小明参加一次智力问答比赛,比赛共设三关.第一、二关各有两个问题,两个问题全答对,可进入下一关.第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为100、300、500元的奖励.小明对三关中每个问题回答正确的概率依次为、、,且每个问题回答正确与否相互独立. (1)求小明过第一关但未过第二关的概率; (2)用ξ表示小明所获得奖品的价值,求ξ的分布列和期望. |
|
△ABC的内角A,B,C对边分别为a,b,c,若+. (1)求角B大小; (2)设y=sinC-sinA,求y的取值范围. |
|
将一个三位数的三个数字顺序颠倒,将所得到的数与原数相加,若和中没有一个数字是偶数,则称这个数为“奇和数”.那么,所有的三位数中,奇和数有 个. | |
等比数列{an}中,a1=1,a2010=4,函数f(x)=x(x-a1)(x-a2)…(x-a2010),则函数f(x) 在点(0,0)处的切线方程为 . | |
点P在椭圆上运动,Q、R分别在两圆(x+1)2+y2=1和(x-1)2+y2=1上运动,则|PQ|+|PR|的取值范围为 . | |
如图,在正方形ABCD中,已知AB=2,M为BC的中点,若N为正方形内(含边界)任意一点,则的最大值是 . |
|