已知命题p:∀x∈R,2x2+1>0,则( ) A.¬p:∃x∈R,2x2+1<0 B.¬p:∀x∈R,2x2+1≤0 C.¬p:∃x∈R,2x2+1≤0 D.¬p:∀x∈R,2x2+1<0 |
|
复数(i为虚数单位)等于( ) A.-1-3i B.-1+3i C.1-3i D.1+3i |
|
函数的定义域是( ) A.(-∞,1) B.(-∞,1] C.(1,+∞) D.[1,+∞) |
|
已知函数f(x)=alnx-bx2图象上一点P(2,f(2))处的切线方程为y=-3x+2ln2+2 (1)求a,b的值; (2)若方程f(x)+m=0在内有两个不等实根,求实数m的取值范围(其中e为自然对数的底,e≈2.7); (3)令g(x)=f(x)-nx,如果g(x)图象与x轴交于A(x1,0),B(x2,0),x1<x2,AB中点为C(x,0),求证:g′(x)≠0. |
|
已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为F(-,0),且右顶点为D(2,0).设点A的坐标是(1,). (1)求该椭圆的标准方程; (2)过原点O的直线交椭圆于点B、C,求△ABC面积的最大值. |
|
如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点. (1)求证:AC⊥SD; (2)若SD⊥平面PAC,求二面角P-AC-D的大小; (3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由. |
|
一袋子中有大小相同的2个红球和3个黑球,从袋子里随机取球取到每个球的可能性是相同的,设取到一个红球得2分,取到一个黑球得1分. (1)若从袋子里一次随机取出3个球,求得4分的概率; (2)若从袋子里每次摸出一个球,看清颜色后放回,连续摸2次,求得分ξ的概率分布列及数学期望. |
|
如图A、B是单位圆O上的点,C是圆与x轴正半轴的交点,A点的坐标为,三角形AOB为正三角形. (1)求sin∠COA; (2)求|BC|2的值. |
|
已知函数f(n)=logn+1(n+2)(n∈N*),定义使f(1)•f(2)…f(k)为整数的数k(k∈N*)叫做企盼数,则在区间[1,50]内这样的企盼数共有 个. | |
非零向量=(sinθ,2),=(cosθ,1),若与共线,则tan(θ-)= . | |