已知椭圆的中心在原点,离心率,且它的一个焦点与抛物线y2=-4x的焦点重合,则此椭圆方程为( ) A. B. C. D. |
|
对于直线m、n和平面α,下面命题中的真命题是( ) A.如果m⊂α,n⊄α,m、n是异面直线,那么n∥α B.如果m⊂α,n⊄α,m、n是异面直线,那么n与α相交 C.如果m⊂α,n∥α,m、n共面,那么m∥n D.如果m∥α,n∥α,m、n共面,那么m∥n |
|
如果执行程序框图,那么输出的S=( ) A.2450 B.2500 C.2550 D.2652 |
|
对于0<a<1,给出下列四个不等式: ①②③④.其中成立的是( ) A.①③ B.①④ C.②③ D.②④ |
|
设数列{an}是等差数列,a2=-6,a8=6,Sn是数列{an}的前n项和,则( ) A.S4<S5 B.S4=S5 C.S6<S5 D.S6=S5 |
|
函数的最小正周期是( ) A. B.π C.2π D.4π |
|
在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道: 摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱. (1)摸出的3个球为白球的概率是多少? (2)摸出的3个球为2个黄球1个白球的概率是多少? (3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱? |
|
为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5. (1)求第四小组的频率; (2)参加这次测试的学生人数是多少? (3)在这次测试中,学生跳绳次数的中位数落在第几小组内? |
|
把命题“四条边相等的四边形是正方形”写成“若p则q”的形式,并写出它的逆命题、否命题、逆否命题,再判断这四个命题的真假. |
|
.
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5) |
|||||||||||