设sn是等差数列{an}的前n项和,已知a1=3,a5=11,则s7等于( ) A.13 B.35 C.49 D.63 |
|
(x+2)6的展开式中x3的系数是( ) A.20 B.40 C.80 D.160 |
|
复数等于( ) A.1-i B.1+i C.-1+i D.-1-i |
|
某光学仪器厂有一条价值为a万元的激光器生产线,计划通过技术改造来提高该生产线的生产能力,提高产品的增加值.经过市场调查,产品的增加值y万元与技术改造投入x万元之间满足: ①y与(a-2x)•x2成正比; ②当时,,并且技术改造投入满足,其中t为常数且t∈(1,2]. (I)求y=f(x)表达式及定义域; (Ⅱ)求技术改造之后,产品增加值的最大值及相应x的值. |
|
某玩具厂计划每天生产A、B、C三种玩具共100个.已知生产一个玩具A需5分钟,生产一个玩具B需7分钟,生产一个玩具C需4分钟,而且总生产时间不超过10个小时.若每生产一个玩具A、B、C可获得的利润分别为5元、6元、3元. (I)用每天生产的玩具A的个数x与玩具B的个数y表示每天的利润T元; (II)请你为玩具厂制定合理的生产任务分配计划,使每天的利润最大,并求最大利润. |
|
已知a>b>0,证明:. |
|
已知函数f(x)是R上的奇函数,且单调递减,解关于x的不等式f(tx2-1)+f(t)<0,其中t∈R且t≠1. |
|
已知函数f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=-b,其中常数a,b∈R,求曲线y=f(x)在点(1,f(1))处的切线方程. |
|
设命题p:实数x满足x2-4x+3<0,q:实数x满足,若p∧q为真,求实数x的取值范围. |
|
函数f(x)=(1-x)•ex的单调递增区间是 . | |