已知m,n是两条直线,α,β是两个平面,给出下列命题: ①若n⊥α,n⊥β,则α∥β; ②若平面α上有不共线的三点到平面β的距离相等,则α∥β; ③若n,m为异面直线n⊂α,n∥β,m⊂β,m∥α,则α∥β.其中正确命题的个数是( ) A.3个 B.2个 C.1个 D.0个 |
|
已知双曲线(a>0)的右焦点与抛物线y2=8x焦点重合,则此双曲线的渐近线方程是( ) A. B. C. D. |
|
某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B、C、D中选择,其他四个号码可以从0至9这十个数字中选择(数字可以重复),某车主第一个号码(从左到右)只想在数字3、5、6、8、9中选择,其他号码只想在1、3、6、9中选择,则他的车牌号码可选的所有可能情况有.( ) A.180种 B.360种 C.720种 D.960种 |
|
对于非零向量,“”是“=0”成立的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
|
复数的虚部是( ) A.- B. C. D.1 |
|
已知函数的图象经过原点,且关于点(-1,1)成中心对称. (1)求函数f(x)的解析式; (2)若数列{an}满足an>0,a1=1,,求数列{an}的通项公式; (3)在(2)的条件下,设数列{an}的前n项和为Sn,试判断Sn与2的大小关系,并证明你的结论. |
|
为了打击“亚丁湾海盗”,确保我国来往索马里海域船只与船员的人身安全,中国派出了护航舰.一日,海面上A处的“武汉”号护航舰的雷达屏幕上发现在北偏西105°,相距40海里的B处有一海盗船,正按固定方向匀速直线航行,于是武汉号护航舰以海里/小时的速度向正北方航行堵截,10分钟后航行到C处,发现海盗船位于北偏西方120°的D处,此时两船相距海里,问海盗船每小时行多少海里? |
|
已知不等式对于一切大于1的自然数n都成立. 求证:实数a的取值范围是. |
|
制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大? |
|
已知数列{an}是首项为a且公比q≠1的等比数列,Sn是其前n的和,a1,2a7,3a4成等差数列. (1)求q3的值; (2)证明:12S3,S6,S12-S6成等比数列. |
|