把函数y=sinx x∈R 的图象上所有的点向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数为( ) A. x∈R B. x∈R C. x∈R D. x∈R |
|
若向量=(1,2),=(-3,4),则•(+)等于( ) A.20 B.(-10,30) C.54 D.(-8,24) |
|
命题“存在x∈R,2x≤0”的否定是( ) A.不存在x∈R,>0 B.存在x∈R,≥0 C.对任意的x∈R,2x≤0 D.对任意的x∈R,2x>0 |
|
在同一坐标系中画出函数y=logax,y=ax,y=x+a的图象,可能正确的是( ) A. B. C. D. |
|
设等差数列{an}的前n项和为Sn,a2+a4=6,则S5等于( ) A.10 B.12 C.15 D.30 |
|
若集合A={x|x2-x<0},B={x|0<x<3},则A∩B等于( ) A.{x|0<x<1} B.{x|0<x<3} C.{x|1<x<3} D.∅ |
|
已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项. (Ⅰ)求数列{an}的通项公式; (Ⅱ)若bn=anlogan,Sn=b1+b2+b3+…+bn,对任意正整数n,Sn+(n+m)an+1<0恒成立,试求m的取值范围. |
|
某企业2003年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不能进行技术改造,预测从今年起每年比上一年纯利润减少20万元,今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n年(今年为第一年)的利润为500(1+)万元(n为正整数). (Ⅰ)设从今年起的前n年,若该企业不进行技术改造的累计纯利润为An万元,进行技术改造后的累计纯利润为Bn万元(须扣除技术改造资金),求An、Bn的表达式; (Ⅱ)依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润? |
|
已知Sn是等比数列{an}的前n项和,S3,S9,S6成等差数列,判断a2,a8,a5是否成等比数列,并说明理由. |
|
已知等差数列{an}中,a2=9,a5=21. (1)求{an}的通项公式; (2)令bn=2an,求数列{bn}的前n项和Sn. |
|