相关试题
当前位置:首页 > 高中数学试题
若f(x)=1-2x,g[f(x)]=manfen5.com 满分网(x≠0),则g(manfen5.com 满分网)的值为( )
A.1
B.3
C.15
D.30
设f(x)的定义域(0,+∞),对于任意正实数m,n恒有f=f(m)+f(n),且当x>1时,manfen5.com 满分网
(1)求f(2)的值;
(2)求证:f(x)在(0,+∞)上是增函数;
(3)解关于x的不等式manfen5.com 满分网,其中p>-1.
已知关于x的不等式manfen5.com 满分网+1<0的解集为空集,求实数k的取值或取值范围.
已知函数manfen5.com 满分网的定义域为M.
(1)求M;
(2)当x∈M时,求f(x)=a•2x+2+3•4x(a>-3)的最小值.
已知函数f(x)=ax2+2x+1(a∈R).
(1)若f(x)的图象与x轴恰有一个公共点,求a的值;
(2)若方程f(x)=0至少有一正根,求a的范围.
已知函数f(x),g(x),在R上有定义,对任意的x,y∈R有f(x-y)=f(x)g(y)-g(x)f(y)且f(1)=0
(1)求证:f(x)为奇函数
(2)若f(1)=f(2),求g(1)+g(-1)的值.
设命题P:关于x的不等式manfen5.com 满分网(a>0且a≠1)的解集为{x|-a<x<2a};命题Q:y=lg(ax2-x+a)的定义域为R.如果P或Q为真,P且Q为假,求a的取值范围.
给出下列四个结论:
①命题“∃x∈R,x2-x>0”的否定是“∀x∈R,x2-x≤0”;
②“若am2<bm2,则a<b”的逆命题为真;
③函数f(x)=x-sinx(x∈R)有3个零点;
④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x).
其中正确结论的序号是    (填上所有正确结论的序号)
对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)f(x2);②f=f(x1)+f(x2);
③(x1-x2)[f(x1)-f(x2)]<0;④manfen5.com 满分网
当f(x)=2-x时,上述结论中正确结论的序号是    写出全部正确结论的序号)
若函数manfen5.com 满分网则不等式manfen5.com 满分网的解集为    
共1028964条记录 当前(70488/102897) 首页 上一页 70483 70484 70485 70486 70487 70488 70489 70490 70491 70492 70493 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.