已知f(x)=x3-6ax2+9a2x(a∈R). (Ⅰ)求函数f(x)的单调递减区间; (Ⅱ)当a>0时,若对∀x∈[0,3]有f(x)≤4恒成立,求实数a的取值范围. |
|
已知抛物线y2=4x,点M(1,0)关于y轴的对称点为N,直线l过点M交抛物线于A,B两点. (Ⅰ)证明:直线NA,NB的斜率互为相反数; (Ⅱ)求△ANB面积的最小值; (Ⅲ)当点M的坐标为(m,0)(m>0,且m≠1).根据(Ⅰ)(Ⅱ)推测并回答下列问题(不必说明理由): ①直线NA,NB的斜率是否互为相反数? ②△ANB面积的最小值是多少? |
|
在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2. (Ⅰ)求证:BE∥平面PAD; (Ⅱ)求证:BC⊥平面PBD; (Ⅲ)设Q为侧棱PC上一点,,试确定λ的值,使得二面角Q-BD-P为45°. |
|
求证:2ln(1+x)≤x2+2x. |
|
已知曲线f(x)=x3+x2+x+3在x=-1处的切线恰好与抛物线y=2ax2相切,则过该抛物线的焦点且垂直于对称轴的直线与抛物线相交截得的线段长度为 . | |
已知正四棱锥S-ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE、SD所成的角的余弦值为 . | |
点P是曲线x2-y-1nx=0上的任意一点,则点P到直线y=x-2的最小距离 . | |
观察式子:1+,1+,1+,…,则可归纳出式子为 . | |
若函数f(x)=在x=1处取极值,则a= . | |
如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道Ⅲ绕月飞行,若用2c1和2c2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a1和2a2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①a1+c1=a2+c2;②a1-c1=a2-c2;③c1a2>a1c2;④. 其中正确式子的序号是( ) A.①③ B.②③ C.①④ D.②④ |
|