如图,设F是椭圆的左焦点,直线l为对应的准线,直线l与x轴交于P点,线段MN为椭圆的长轴,已知|MN|=8,且|PM|=2|MF|. (Ⅰ)求椭圆的标准方程; (Ⅱ)求证:对于任意的割线PAB,恒有∠AFM=∠BFN; (Ⅲ)求三角形△ABF面积的最大值. |
|
设F是椭圆的左焦点,直线l为其左准线,直线l与x轴交于点P,线段MN为椭圆的长轴,已知|MN|=8,且|PM|=2|MF|. (1)求椭圆C的标准方程; (2)若过点P的直线与椭圆相交于不同两点A、B求证:∠AFM=∠BFN. |
|
(理科)已知二次函数f(x)=x2-ax+a(a>0,x∈R),不等式f(x)≤0的解集有且只有一个元素,设数列{an}的前n项和Sn=f(n)(n∈N*) (1)求数列{an}的通项公式; (2)设,求数列{bn}的前n项和Tn; (3)设各项均不为0的数列{cn}中,所有满足cm•cm+1<0的正整数m的个数,称为这个数列{cn}的变号数,若,求数列{cn}的变号数. |
|
已知二次函数f(x)=x2-ax+a(a>0,x∈R)有且只有一个零点,数列{an}的前n项和Sn=f(n)(n∈N*). (Ⅰ)求数列{an}的通项公式; (Ⅱ)设,求数列{bn}的前n项和Tn. |
|
(理科)定义在R上的函数是奇函数,当且仅当x=1时,f(x)取得最大值. (1)求a、b的值; (2)若方程上有且仅有两个不同实根,求实数m的取值范围. |
|
已知函数. (1)求的值; (2)当x∈(-a,a],其中a∈(0,1],a是常数,函数f(x)是否存在最小值?若存在,求出f(x)的最小值;若不存在,请说明理由. |
|
在某校运动会中,甲、乙、丙三支足球队进行单循环赛(即每两队比赛一场)共赛三场,每场比赛胜者得3分,负者得0分,没有平局.在每一场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为; (1)求甲队获第一名且丙队获第二名的概率; (2)设在该次比赛中,甲队得分为ξ,求ξ的分布列和数学期望. |
|
有A、B、C、D、E共5个口袋,每个口袋装有大小和质量均相同的4个红球和2个黑球,现每次从其中一个口袋中摸出3个球,规定:若摸出的3个球恰为2个红球和1个黑球,则称为最佳摸球组合. (1)求从口袋A中摸出的3个球为最佳摸球组合的概率; (2)现从每个口袋中摸出3个球,求恰有3个口袋中摸出的球是最佳摸球组合的概率. |
|
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1,直线B1C与平面ABC成30°角. (I)求证:平面B1AC⊥平面ABB1A1; (II)求直线A1C与平面B1AC所成角的正弦值. |
|
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1=a,直线B1C与平面ABC成30°角. (1)求证:平面B1AC⊥平面ABB1A1; (2)求二面角B-B1C-A的正切值. |
|