相关试题
当前位置:首页 > 高中数学试题
已知等差数列{an}中,S10=120,那么a2+a9等于( )
A.12
B.24
C.36
D.48
下列不等式:
①-x2+x+1≥;0
manfen5.com 满分网
③x2+6x+10>0;
④2x2-3x+4<1.
其中解集为R的是( )
A.④
B.③
C.②
D.①
A是定义在[2,4]上且满足如下两个条件的函数Φ(x)组成的集合:
①对任意的x∈[1,2],都有Φ(2x)∈(1,2);
②存在常数L(0<L<1),使得对任意的x1,x2∈[1,2],都有|Φ(2x1)-Φ(2x2)|≤L|x1-x2|;
(1)设manfen5.com 满分网,证明:Φ(x)∈A;
(2)设Φ(x)∈A,如果存在x∈(1,2),使得x=Φ(2x),那么,这样的x是唯一的;
(3)设Φ(x)∈A,任取x1∈(1,2),令xn+1=Φ(2xn),n=1,2,…,
证明:给定正整数k,对任意的正整数p,不等式manfen5.com 满分网成立.
已知数列an中,a1=1,a2=a-1(a≠1,a为实常数),前n项和Sn恒为正值,且当n≥2时,manfen5.com 满分网
(1)求证:数列Sn是等比数列;
(2)设an与an+2的等差中项为A,比较A与an+1的大小;
(3)设m是给定的正整数,a=2.现按如下方法构造项数为2m有穷数列bn:当k=m+1,m+2,…,2m时,bk=ak•ak+1;当k=1,2,…,m时,bk=b2m-k+1.求数列bn的前n项和为Tn(n≤2m,n∈N*).
已知函数manfen5.com 满分网,设F(x)=f(x)+g(x)
(1)求F(x)的单调区间;
(2)若以y=F(x)(x∈(0,3])图象上任意一点P(x,y)为切点的切线的斜率manfen5.com 满分网恒成立,求实数a的最小值;
(3)若对所有的x∈[e,+∞)都有xf(x)≥ax-a成立,求实数a的取值范围.
已知椭圆的中心在坐标原点,且经过点Mmanfen5.com 满分网,Nmanfen5.com 满分网,若圆C的圆心与椭圆的右焦点重合,圆的半径恰好等于椭圆的短半轴长,已知点A(x,y)为圆C上的一点.
(1)求椭圆的标准方程和圆的标准方程;
(2)求manfen5.com 满分网(O为坐标原点)的取值范围;
(3)求x2+y2的最大值和最小值.
如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD,
AB=manfen5.com 满分网AD,E是线段PD上的点,F是线段AB上的点,且manfen5.com 满分网
(1)判断EF与平面PBC的关系,并证明;
(2)当λ为何值时,DF⊥平面PAC?并证明.

manfen5.com 满分网
在△ABC中,已知manfen5.com 满分网,sinB=cosAsinC,又△ABC的面积等于6.
(1)求△ABC的三边之长;
(2)设P是△ABC(含边界)内一点,P到三边AB、BC、CA的距离分别为d1、d2、d3,求d1+d2+d3的取值范围.
设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若manfen5.com 满分网,则manfen5.com 满分网=   
已知m、n是不同的直线,α、β是不重合的平面.命题p:若α∥β,m⊂α,n⊂β,则m∥n;
命题q:若m⊥α,n⊥β,m∥n,则α∥β.下面的命题中,①p∨q;②p∧q;③p∨非q;④非p∧q.真命题的序号是     (写出所有真命题的序号).
共1028964条记录 当前(71734/102897) 首页 上一页 71729 71730 71731 71732 71733 71734 71735 71736 71737 71738 71739 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.