已知函数,则的值是( ) A.9 B.-9 C. D. |
|
设全集U=R,,则A∩B=( ) A.(cos2,1] B.[cos2,1] C.(-1,2) D.(-1,cos2] |
|
有n个首项为1的等差数列,设第m个数列的k项为amk(m,k=1,2,3,…,n,n≥3),公差为dm,并且a1n,a2n,a3n,…,ann成等差数列. (1)当d3=2时,求a32,a33,a34以及a3n; (2)证明dm=p1d1+p2d2(3≤m≤n,p1,p2是m的多项式),并求p1+p2的值; (3)当d1=1,d2=3时,将数列{dm}分组如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),…(每组数的个数构成等差数列),设前m组中所有数之和为(cm)4,(cm>0),求数列的前n项和Sn. |
|
已知抛物线方程为y2=4x,过Q(2,0)作直线l. ①若l与x轴不垂直,交抛物线于A、B两点,是否存在x轴上一定点E(m,0),使得∠AEQ=∠BEQ?若存在,求出m的值;若不存在,请说明理由? ②若L与X轴垂直,抛物线的任一切线与y轴和L分别交于M、N两点,则自点M到以QN为直径的圆的切线长|MT|为定值,试证之. |
|
已知函数. (Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值; (Ⅱ)求f(x)的单调区间; (Ⅲ)设g(x)=x2-2x,若对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范围. |
|
如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD为正方形,E、F分别为AB、PC的中点. ①求证:EF⊥平面PCD; ②求平面PCB与平面PCD的夹角的余弦值. |
|
现有8名奥运会志愿者,其中志愿者A1,A2,A3通晓日语,B1,B2,B3通晓俄语,C1,C2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求A1被选中的概率; (Ⅱ)求B1和C1不全被选中的概率. |
|
已知函数f(x)=Asin(ωx+φ)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x,2)和(x+2π,-2). (1)求f(x)的解析式及x的值; (2)若锐角θ满足,求f(4θ)的值. |
|
已知数列1,2,1,2,2,1,2,2,2,1…,其中相邻的两个1被2隔开,第n对1之间有n个2,则该数列的前1234项的和为 . | |
如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC的中点,连接AD并延长交⊙O于点E.若,∠APB=30°,则AE= . |
|