容量100的样本数据,按从小到大的顺序分8组,如表:
A.14和0.14 B.0.14和14 C.和0.14 D.和 |
|||||||||||||||||||
一个容量40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;[25.9,26.2),8;[26.2,26.5),8;[26.5,26.8),4;则样本在[25,25.9)上的频率为( ) A. B. C. D. |
|
在画两个变量的散点图时,下面哪个叙述是正确的( ) A.预报变量x轴上,解释变量y轴上 B.解释变量x轴上,预报变量y轴上 C.可以选择两个变量中任意一个变量x轴上 D.可以选择两个变量中任意一个变量y轴上 |
|
某企业有职150人,其中高级职15人,中级职45人,一般职90人,现抽30人进行分层抽样,则各职称人数分别为( ) A.5,10,15 B.3,9,18 C.3,10,17 D.5,9,16 |
|
某产品分为甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率0.03,出现丙级品的概率0.01,则对产品抽查一次抽得正品的概率是( ) A.0.09 B.0.98 C.0.97 D.0.96 |
|
从一批羽毛球产品中任取一个,质量小于4.8 g的概率是0.3,质量不小于4.85 g的概率是0.32,那么质量在[4.8,4.85)g范围内的概率是( ) A.0.62 B.0.38 C.0.7 D.0.68 |
|
证明: (1)已知x,y都是正实数,求证:x3+y3≥x2y+xy2, (2)已知a,b,c∈R+,且a+b+c=1,求证:. |
|
(选做题) 在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的极坐标方程为ρsin(θ+)=,圆C的参数方程为,(θ为参数,r>0) (I)求圆心C的极坐标; (II)当r为何值时,圆C上的点到直线l的最大距离为3. |
|
如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B,C两点,圆心O在∠PAC的内部,点M是BC的中点. (Ⅰ)证明A,P,O,M四点共圆; (Ⅱ)求∠OAM+∠APM的大小. |
|
已知函数f(x)=(m,n∈R)在x=1处取得极值2. (I)求f(x)的解析式; (II)设函数g(x)=x2-2ax+a,若对于任意的x1∈R,总存在x2∈[-1,1],使得g(x2)≤f(x1),求实数a的取值范围. |
|