相关试题
当前位置:首页 > 高中数学试题
数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0(n∈N*).
(1)求数列{an}的通项公式.
(2)设bn=manfen5.com 满分网(n∈N*),Sn=b1+b2+…+bn,是否存在最大的整数m,使得任意的n均有Snmanfen5.com 满分网总成立?若存在,求出m;若不存在,请说明理由.
已知点(1,manfen5.com 满分网)是函数f(x)=ax(a>0,且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=manfen5.com 满分网(n≥2).
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{manfen5.com 满分网}前n项和为Tn,问满足Tnmanfen5.com 满分网的最小正整数n是多少?
已知数列an的通项公式为an=manfen5.com 满分网,设manfen5.com 满分网,求Tn
已知等比数列{an}的各项都是正数,Sn=80,S2n=6560,且在前n项中,最大的项为54,求n的值.
在等差数列an中,a1=25,S17=S9,求Sn的最大值.
manfen5.com 满分网和n+1之间插入n个正数,使这n+2个数依次成等比数列,求所插入的n个数之积.
已知一个等差数列前五项的和是120,后五项的和是180,又各项之和是360,则此数列,求项数n.
已知数列{an}的各项均是正数,其前n项和为Sn,满足( p-1)Sn=p2-an,其中p为正常数,且p≠1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=manfen5.com 满分网(n∈N*),数列{bnbn+2}的前n项和为Tnmanfen5.com 满分网
设Sn为数列{an}的前n项和,Sn=kn2+n,n∈N*,其中k是常数.
(I)求a1及an
(II)若对于任意的m∈N*,am,a2m,a4m成等比数列,求k的值.
数列{an}的前n项和为Sn,且a1=1,manfen5.com 满分网,n=1,2,3,…,求
( I)a2,a3,a4的值及数列{an}的通项公式;
(II)a2+a4+a6+…+a2n的值.
共1028964条记录 当前(81035/102897) 首页 上一页 81030 81031 81032 81033 81034 81035 81036 81037 81038 81039 81040 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.