相关试题
当前位置:首页 > 高中数学试题
已知manfen5.com 满分网=(1+cosα,sinα),manfen5.com 满分网=(1-cosβ,sinβ),manfen5.com 满分网,α∈(0,π),β∈(π,2π),向量manfen5.com 满分网manfen5.com 满分网夹角为θ1,向量manfen5.com 满分网manfen5.com 满分网夹角为θ2,且θ12=manfen5.com 满分网,若△ABC中角A、B、C的对边分别为a、b、c,且角A=β-α.
求(Ⅰ)求角A 的大小; 
(Ⅱ)若△ABC的外接圆半径为manfen5.com 满分网,试求b+c取值范围.
已知:正方体ABCD-A1B1C1D1,AA1=2,E为棱CC1的中点.
(1)求证:B1D1⊥AE;
(2)求证:AC∥平面B1DE;
(3)(文)求三棱锥A-BDE的体积.
(理)求三棱锥A-B1DE的体积.

manfen5.com 满分网
在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.则圆x2+y2=1上一点与直线manfen5.com 满分网上一点的“折线距离”的最小值是   
已知O是△ABC的外心,AB=2,AC=1,∠BAC=120°.设manfen5.com 满分网,若manfen5.com 满分网,则λ12=   
函数f(x)满足manfen5.com 满分网,且x1,x2均大于e,f(x1)+f(x2)=1,则f(x1x2)的最小值为   
已知manfen5.com 满分网,x3+sinx-2a=0,4y3+sinycosy+a=0,则tan(x+2y)=   
manfen5.com 满分网已知{an}是等差数列,设Tn=|a1|+|a2|+…+|an|(n∈N*).某学生设计了一个求Tn的部分算法流程图(如图),图中空白处理框中是用n的表达式对Tn赋值,则空白处理框中应填入:Tn   
已知有序数对(a,b)满足a∈[0,3],b∈[-2,2],关于x的一元二次方程x2+2ax+b2=0有实根的概率   
设a,b为不重合的两条直线,α,β为不重合的两个平面,给出下列命题:
(1)若a⊂α,b⊄α,a,b是异面直线,那么b∥α;(2)若a∥α且b∥α,则a∥b;
(3)若a⊂α,b∥α,a,b共面,那么a∥b;(4)若a⊥α且a⊥β,则α∥β.
上面命题中,所有真命题的序号是   
将函数manfen5.com 满分网的图象沿坐标轴右移,使图象的对称轴与函数manfen5.com 满分网的对称轴重合,则平移的最小单位是   
共1028964条记录 当前(81451/102897) 首页 上一页 81446 81447 81448 81449 81450 81451 81452 81453 81454 81455 81456 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.