若某空间几何体的三视图如图所示,则该几何体的体积是( ) A.2 B.1 C. D. |
|
如图,△ABC为三角形,AA′∥BB′∥CC′,CC′⊥平面ABC 且3AA′=BB′=CC′=AB,则多面体△ABC-A′B′C′的正视图(也称主视图)是( ) A. B. C. D. |
|
若一个底面是正三角形的三棱柱的正视图如图所示,其侧面积等于( ) A. B.2 C.2 D.6 |
|
一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为( ) A. B. C. D. |
|
一个几何体的三视图如图,该几何体的表面积是( ) A.372 B.360 C.292 D.280 |
|
如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B,C两点,圆心O在∠PAC的内部,点M是BC的中点. (Ⅰ)证明A,P,O,M四点共圆; (Ⅱ)求∠OAM+∠APM的大小. |
|
设函数f(x)=ln(x+a)+x2 (I)若当x=-1时,f(x)取得极值,求a的值,并讨论f(x)的单调性; (II)若f(x)存在极值,求a的取值范围,并证明所有极值之和大于. |
|
如图,面积为S的正方形ABCD中有一个不规则的图形M,可按下面方法估计M的面积:在正方形ABCD中随机投掷n个点,若n个点中有m个点落入M中,则M的面积的估计值为.假设正方形ABCD的边长为2,M的面积为1,并向正方形ABCD中随机投掷10000个点,以X表示落入M中的点的数目. (I)求X的均值EX; (II)求用以上方法估计M的面积时,M的面积的估计值与实际值之差在区间(-0.03,0.03)内的概率. 附表: |
|
在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q. (Ⅰ)求k的取值范围; (Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由. |
|
如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点. (Ⅰ)证明:SO⊥平面ABC; (Ⅱ)求二面角A-SC-B的余弦值. |
|