在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q. (Ⅰ)求k的取值范围; (Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由. |
|
如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点. (Ⅰ)证明:SO⊥平面ABC; (Ⅱ)求二面角A-SC-B的余弦值. |
|
如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D.现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB. |
|
某校安排6个班到3个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有 种. | |
i是虚数单位,= .(用a+bi的形式表示,a,b∈R) | |
设函数为奇函数,则a= . | |
已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 . | |
一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱.这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为h1,h2,h,则h1:h2:h=( ) A. B. C. D. |
|
甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表,s1,s2,s3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )
A.s3>s1>s2 B.s2>s1>s3 C.s1>s2>s3 D.s2>s3>s1 |
||||||||||||||||||||||||||||||||||||||||||||||
曲线y=ex在点(2,e2)处的切线与坐标轴所围三角形的面积为( ) A.e2 B.2e2 C.e2 D. |
|