设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件Cn(2≤n≤5,n∈N),若事件Cn的概率最大,则n的所有可能值为( ) A.3 B.4 C.2和5 D.3和4 |
|
设函数y=x3与y=()x-2的图象的交点为(x,y),则x所在的区间是( ) A.(0,1) B.(1,2) C.(2,3) D.(3,4) |
|
阅读右边的程序框图,若输入的n是100,则输出的变量S和T的值依次是( ) A.2550,2500 B.2550,2550 C.2500,2500 D.2500,2550 |
|
设O是坐标原点,F是抛物线y2=2px(p>0)的焦点,A是抛物线上的一点,与x轴正向的夹角为60°,则为( ) A. B. C. D. |
|
某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:每一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;…第六组,成绩大于等于18秒且小于等于19秒.如图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,则从频率分布直方图中可以分析出x和y分别为( ) A.0.9,35 B.0.9,45 C.0.1,35 D.0.1,45 |
|
命题“对任意的x∈R,x3-x2+1≤0”的否定是( ) A.不存在x∈R,x3-x2+1≤0 B.存在x∈R,x3-x2+1≤0 C.存在x∈R,x3-x2+1>0 D.对任意的x∈R,x3-x2+1>0 |
|
给出下列三个等式:f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),.下列函数中不满足其中任何一个等式的是( ) A.f(x)=3x B.f(x)=sin C.f(x)=log2 D.f(x)=tan |
|
已知=(1,n),=(-1,n),若2-与垂直,则||=( ) A.1 B. C.2 D.4 |
|
为了得到函数y=sin(2x-)的图象,可以将函数y=cos2x的图象( ) A.向右平移个单位长度 B.向右平移个单位长度 C.向左平移个单位长度 D.向左平移个单位长度 |
|
下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A.①② B.①③ C.①④ D.②④ |
|